Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Получение ароматических соединений из угля

    Наиболее важным источником получения ароматических соединений является уголь Поскольку именно уголь в истории развития цивилизации был одним из первых используемых природных ресурсов, основной областью органической химии, промышленного органического синтеза в XIX веке, в период становления органической химии, была химия ароматических соединений Переориентация исследований и технологических процессов органического синтеза на предельные и непредельные углеводороды стала необходимой и возможной в связи с доступностью нефте- [c.422]


    Наиболее важным источником получения ароматических соединений является каменный уголь. При нагревании каменного угля в коксовых печах без доступа воздуха при температуре 1000—1300°С образуется кокс, представляющий смесь углерода и золы (используемый для целей металлургии), каменноугольная смола и коксовый газ. Каменноугольная смола и коксовый газ перерабатываются на коксохимических заводах. [c.413]

    Промышленные способы получения углеводородов бензольного ряда и их практическое использование. Главными сырьевыми источниками получения ароматических соединений являются каменный уголь и нефть. [c.116]

    В течение длительного времени уголь оставался основным источником для получения ароматических соединений но теперь нефтяные фракции превращаются в широкий ряд ароматических углеводородов. Эти соединения имеют громадную промышленную ценность, поскольку они служат исходным материалом в синтезе красителей, полимеров, пластмасс, пленкообразующих веществ, синтетического каучука, разнообразных синтетических изделий, лекарственных препаратов и многих других продуктов. Бензол, толуол и ксилолы используются главным образом в качестве растворителей и реакционных сред. [c.44]

    Научная деятельность академика Н. Д. Зелинского многогранна. Он одним из первых осуществил синтезы индивидуальных углеводородов нефтей. Первый синтетический нафтен, полученный им в 1895 г., был 1,3-диметилциклогексан. Он синтезировал также циклопропановые, циклобутановые, циклопентановые и другие углеводороды, в том числе с сопряженными двойными связями, а также бициклические углеводороды (спираны). Важнейшим направлением исследований Н. Д. Зелинского было изучение каталитических превращений углеводородов. Ему удалось найти эффективные катализаторы, обеспечивающие избирательность реакций дегидрогенизации. В частности, Н. Д. Зелинский применял платину и палладий, нанесенные на активированный уголь. В 1934 г. Н. Д. Зелинский совместно с Н. И. Шуйкиным открыл, что ароматические соединения могут быть получены каталитической дегидрогенизацией парафиновых углеводородов. Это направление в дальнейшем было развито Б. А. Казанским, А. Ф. Платэ и др. Прп дегидрогенизации низших углеводородов были получены олефины (1949). Н. Д. Зелинскому также принадлежат исследования по химии гетероциклических соединений. [c.292]

    Главными источниками ароматических соединений являются каменный уголь и нефть [1—3]. При коксовании каменного угля с целью получения кокса для металлургической промышленности путем термолиза без. доступа воздуха при 1000-—1200°С образуется также коксовый газ, содержащий углеводороды бензольного ряда, и конденсат, состоящий из водного раствора аммиака и каменноугольной смолы. Последняя представляет собой исключительно сложную смесь, насчитывающую до 1000 соединений, из которых идентифицировано около 500, составляющих суммарно л 55% общей массы. Больше всего в Каменноугольной смоле содержится нафталина (10%), далее следуют фенантрен (4,5%)флуорантен (3,0%), аценафтилен, пирен, флуорен (1,8—2,5%), 2-метилнафталин антрацен, дибензофуран (1,3—1,5%), хризен, инден, карбазол (0,9—1,0%). Все остальные соединения содержатся в каменноугольной смоле в количествах < 1%, причем большая часть из них в концентрациях, измеряемых сотыми и тысячными долями процента. Однако масштабы коксохимического производ- [c.9]


    Каменный уголь около 200 лет назад начали использовать для получения кокса, необходимого металлургической промышленности, а на основе ароматических соединений, побочно образующихся при коксовании, начала развиваться промышленность органического синтеза. [c.64]

    Из приведенной на рис. 14 схемы (стр. 46—47), в которой показаны природные источники сырья и пути получения алифатических углеводородов, видны некоторые направления использования ацетилена. Основными источниками получения алифатических соединений, в том числе олефинов и продуктов их превращений, а также ароматических и гетероциклических соединений, являются нефть, уголь и продукты их переработки, например смола. Синтезы на основе окиси углерода также позволяют получить парафины, олефины и их простейшие производные, например метанол и высшие спирты. На этих синтезах основано и получение производных углеводородов с длинной цепью углеродных атомов, обладающих моющими свойствами. С открытием синтезов на основе ацетилена возникли совершенно новые направления химической переработки исходных веществ. [c.175]

    Смола. При охлаждении поступающей из коксовых печей парогазовой смеси конденсируются содержащиеся в ней смоляные и водяные пары с получением смолы и воды. Выходы смолы составляют 2,5—3,2% на загруженный уголь. Каменноугольная смола представляет собою вязкую жидкость от темнокоричневого до черного цвета, обычно удельного веса от 1,14 до 1,25. Коксовая смола вследствие перегрева и разложения ее паров в период их пребывания в камере коксования содержит главным образом ароматические соединения (бензол, нафталин, антрацен, их гомологи и др.). [c.47]

    Важнейшими видами сырья для производства микробного протеина являются ископаемое топливо (уголь, нефть, природный газ) и продукты фотосинтетической деятельности растений. Уголь может быть превращен в газ или жидкие углеводороды. Для быстрой конверсии дрожжами предпочтительны углеводороды нефти с 10— 20 углеродными атомами. Нефть содержит около 2% этих соединений, и утилизация углеводородной фракции из ежегодной добычи способна обеспечить получение около 20 млн т дрожжевого протеина. Выход протеина из жидких углеводородов в 2 раза больше, чем из углеводных субстратов. В масштабах производства из 100 т углеводородов образуется 100 т дрожжей, содержащих 50% протеина. Бактерии и грибы также способны к росту на этом субстрате. Для поддержания активного роста дрожжевые клетки и нерастворимые в воде углеводороды тщательно диспергируются в культуральной водной среде, кислород подается в количествах, больших, чем это необходимо для роста на углеводных субстратах, а наличие в нефти потенциально токсичных ароматических соединений требует очистки углеводородов от них до использования либо экстракции всех остаточных углеводородов из выращенных клеток. [c.7]

    Извлечение индивидуальных соединений из полученных фракций каменноугольной смолы достигается сочетанием методов ректификации и кристаллизации. Общий выход ароматических углеводородов, получаемых при сухой перегонке, составляет примерно 1% на взятый уголь. [c.435]

    Первую группу реакций, которые нужно рассмотреть в связи с реальными способами получения пиридинового цикла, составляют пирогенетические реакции, среди которых наиболее важной является сухая перегонка каменного угля. Действительный путь образования азотистых оснований при этом процессе неизвестен, и о нем имеются только догадки. Каменный уголь представляет собой материал сложного состава проичем состав его может изменяться в широких пределах. Так, антрацит может иметь до 88% углерода, тогда как битумный уголь, употребляемый чаще всего для получения побочных продуктов коксования, содержит около 75—80% углерода, 6% водорода, 3—5% кислорода, 5—7% золы и по 1—2% азота и серы. Углерод, равно как и другие элементы, не находится в свободном состоянии, а входит в состав сложного высокомолекулярного соединения. При 1000—1300° наступает разложение угля, в результате которого большая часть кислорода теряется в виде углекислого газа или окиси углерода, водород выделяется в свободном виде, азот выделяется либо в виде аммиака, либо в соединении с углеродом и водородом в виде азотистых оснований или веществ слабокислого характера—индола и карбазола. Образуются и другие соединения ароматического характера—бензол, толуол, тиофен и Др. При низкотемпературном коксовании (600—700°) образуется значительно больший процент алифатических и алициклических соединений, и это позволяет высказать предположение, что заключительной стадией образования веществ ароматического характера является дегидрирование. Во всяком случае, кажется очень правдоподобным, что пиридин и его гомологи образуются путем превращения [c.346]


    Уголь может быть облагорожен двумя методами сухой перегонкой (коксованием) и непосредственной гидрогенизацией угля или продуктов его перегонки. Кроме того, применяется процесс газификации для получения горючих газов или газов для химического синтеза, а также для получения водорода. Газификацию можно лишь отчасти отнести к процессам облагораживания угля, так как его компоненты при газификации полностью разрушаются и смола, бензин и другие вещества получаются только как побочные продукты. Большая часть промышленности органического синтеза (ароматических и алифатических веществ) базируется на использовании продуктов, получаемых в процессах сухой перегонки, гидрогенизации и газификации угля. В приведенной на рис. 14 обзорной схеме показаны возможности промышленного получения из угольного и нефтяного сырья алифатических соединений. [c.46]

    Активированный уголь играет основную роль в газовой хроматографии, а именно при разделении газообразных углеводородов, а также в фронтальной методике (см. стр. 221) и при отделении ароматических аминокислот от жирных. При хроматографировании антибиотиков активированный уголь служит для первичной обработки ферментационной жидкости, из которой он извлекает активные вещества. Нередко раствор смеси соединений, полученной в результате химической реакции или из природных материалов, перед хроматографированием обрабатывают углем для удаления некоторых примесей, которые затруднили бы разделение или наблюдение за разделением. [c.196]

    Смола, впервые полученная в 1814 г. в Англии как побочный продукт при производстве каменноугольного газа, использовалась только как топливо до тех пор, пока Гофманн в 1845 г. не выделил из нее бензол. Продуктами сухой или деструктивной перегонки каменного угля являются каменноугольный газ, жидкий конденсат, содержащий аммиак и смолу, и твердый остаток — кокс. Несмотря на огромное значение каменноугольной смолы, как сырья для анилинокрасочной и других органических отраслей химической промышленности, она остается побочным продуктом сухой перегонки угля, которая в основном ведется для получения каменноугольного газа или кокса для металлургии. Выход и состав смолы зависит от характера угля и техники сухой перегонки, причем важнейшими факторами являются форма и размеры аппаратуры, скорость нагревания, температура и продолжительность процесса. В среднем уголь, идущий на производство газа, дает 5—6% смолы, в то время как коксующиеся угли — менее 4 %. Из тонны угля в среднем получаются 8—12 галлонов смолы. Более молодые угли — лигнит, бурый уголь — дают смолу с высоким содержанием парафиновых углеводородов, и поэтому их значение в производстве красителей ограничено. Битумные угли с минимальным содержанием серы дают смолы, которые ценятся из-за отсутствия в них трудноудаляемых соединений серы. Оптимальная температура в коксовой печи в процессе сухой перегонки 1000—1250°. При этом получается максимальный выход бензольных ароматических углеводородов и нафталина. [c.41]

    Для получения моторного топлива по методу гидрогенизации под высоким давлением фирмы И. Г. применяются бурые и каменные угли, причем бурые угли дают бензины с преобладанием алифатических углеводородов, а каменные угли —с преобладанием ароматических и гидроароматических углеводородов. Уголь, построенный из высокомолекулярных соединений, сравнительно беден водородом. Бензин же, полученный из угля гидрированием, напротив, представляет собой смесь низкомолекулярных соединений с высоким содержанием водорода. Каменный уголь содержит в среднем 5,5 /о водорода, тогда как в хорошем бензине содержание его составляет от 14 до 15 /о. Так как в условиях заводского производства до сих пор не удалось рентабельно получить из угля бензин в одном процессе, то пришлось перейти к двухступенчатому процессу. В первой стадии процесса, в так называемой жидкой фазе, происходит термическое расщепление высокомолекулярных комплексов. Работа ведется в присутствии водорода под высоким давлением, так как при отсутствии водорода и при обычноМ) [c.121]

    Другим источником получения ароматических соединений яв-ляется каменноугольная смола, выделяющаяся при высокотем- в пературной переработке угля. В ней содержатся бензол, толуоЛ, нафталин и другие полиароматические углеводороды. Учитывая объем перерабатываемого угля в настоящее время и планируемое развитие его переработки рядом других методов, уголь можно оценивать как перспективный источник получения ароматиче-4 ских углеводородов. —  [c.9]

    Полимеризация ацетилена в бензол представляет собою экзотермический процесс, и поэтому следует опасаться реакции самопроизвольного разложения, сопровождаемого взрывом. Berl и Hoffman i i предложили для регулирования этого процесса с целью получения ароматических соединений разбавлять ацетилен углекисльш газом, который будет поглощать избыток тепла применяя в качестве катализатора уголь, авторы при температурах 600—700° получили 98%-ный выход жидких продуктов реакции. Присутствие железа, кварца и кислых или щелочных контактных масс (например, окислов олова или кальция) не повышало выхода жидких продуктов, в то время как прибавление к исходному газу водяного пара увеличивало этот выход. [c.97]

    Целый ряд исследователей сходится на том, что кремнезем, фарфор и содержащие кремнезем веи(ества не являются активными катализаторами разложения газообразных парафинов на элементы. Медь и вольфрам также мало влияют на разложение углеводородов на углерод и водород . hamberlin и Bloom а также Wheel( r и W ood применяли медные трубки для получения ароматических углеводородов при. высокотемпературном пиролизе газообразных парафиновых углеводородов. Что касается железа и никеля, то они оказались активными катализаторами, способствующими образованию угля и водорода из метана. Уголь, получающ шся в результате пиролиза естественного газа, обладает избирательной. активностью при превращении парафинов в ароматические углеводороды. В случае углеводородов с малым молекулярным весом разложение как будто протекает через промежуточное образование лабильных остатков первичной же реакцией разложения для высокомолекулярных соединений, как уже было сказано выше, является распад с образованием одной предельной и одной непредельной молекул. [c.122]

    ЛО, что структура переходного состояния для этих двух путей существенно различается (МШВО/З, 22]). Структура переходного состояния, полученная для конротаторного пути, согласуется с более ранними результатами, полученными в приближении М.Ш00/2 и в не-эмпирических расчетах. Это неплоская структура (двугранный угол 26°, угол скручивания метиленовых групп ж42°), причем расстояние С—С между атомами разрывающейся связи равно 0,206 нм, а остальные длины связей СС близки между собой и имеют значения, характерные для ароматических соединений. Дисрота-торный путь при снятии ограничений по сихмметрии приводит к несимметричному переходному состоянию, в котором одна из метиленовых групп повернута на 45°, а другая остается перпендикулярной плоскости четырех атомов С. Расстояние С—С диссоциирующей связи в этом случае равно 0,22 нм. Рассчитанная энергия активации Для кон- и дисротаторного путей составила 205 и 234 кДж/моль. Экспериментальная оценка дает барьер 151 кДж/моль для конротаторного пути, а барьер для дисротаторного пути по крайней мере на 63 кДж/моль выще, чем для конротаторного. [c.179]

    Лепна-Берке водород и для гидрогенизации и для синтеза аммиака получается из водяного газа в генераторах, работающих на буро-угольных брикетах. Для получения чистого водорода водяной газ очищается от сернистых соединений, для чего нередко используются алкацидные растворы. Окись углерода конвертируется в углекислоту, легко отмывающуюся в скрубберах. Гидрирование проводится в две фазы в автоклавах высокого давления, внешним видом напоминающих гигантские орудийные стволы. В первой — жидкой фазе, мелко раздробленный и суспендированный в антраценовом масле или в смоле уголь подвергается гидрированию над подвижным или плаваю-щим> катализатором — окислами железа (болотная руда, отходы производства алюминия и т. д.). При этом угольные компоненты молекулы угля, имеющие, как можно считать в первом приближении, вид пчелиных сот, распадаются. Более мелкие четырех- и трехкольчатые осколки (типа фенантрена и других ароматических углеводородов с конденсированными кольцами), насыщаясь водородом (кольцо за кольцом), будут превращаться вследствие распада образовавшихся жирных колец сначала в двухкольчатые углеводороды (гомологи нафталина) и, наконец, в гомологи бензола или даже, в зависимости от условий гидрирования, в гомологи циклогексана и циклопентана. Само собой разумеется, что при понижении температуры гидрогенизации (проводимой в пределах 550 —380°) и повышении гидрирующей эффективности катализатора, деструктивная гидрогенизация может быть остановлена и на стадии гомологов [c.154]

    Этими исследователями было установлено, что различные факторы влияют нижеследующим образом. Повышение температуры влияет на окраску продуктов, так же как и на скорость окисления. Повышение давления воздуха ускоряет реакцию количество воздуха влияет на молекулярные веса кислот. Чрезмерная продолжительность окисления приводит ко вторичному разложению. Замена соды мелом была найдена целесообразной. Скорость перемешивания, концентрация и количество щелочи оказывали слабое влияние. Лучши.ми катализаторами 01каза-лись железо, ма рганец и медь, хотя церий, титан, фуллерова зе.мля и древесный уголь давали мшее окрашенные продукты. При футеровке аппарата свинцом или стеклом скорость окисления замедлялась, но исе же получались продукты с более светлой окраской. Добавка ароматических углеводородов, например толуола и ксилола, ведет к большим выходам кислот, хотя ни одно из этих соединений не окисляется при этих же условиях в отсутствии парафинов. Парафин в отсутствии щелочей повидимо.му окисляется более энергично. Другие парафины, например полученные из лигнита, угля или торфа, тоже окислялись, хотя первые два и оказывались наиболее стойкими. Выход восковых кислот достигал 75% от окисленного парафина. [c.1014]

    Двигатель, соединенный с электромотором, сохранял постоянное число оборотов (900 об/мин) при следующем режиме работы температура воздуха, поступающего в цилиндр, 65° С, температура охлаждающей воды — 100° С, расход топлива за 30 сек — 10 мл, угол опережения впрыска топлива, в градусах поворота коленчатого вала, постоянный (13°). В качестве объектов исследования были выбраны топлива ТС-1, ДС, ДЛ, ЛКГ, ЗМ, цетан и топливо ЦИА. Последнее топливо представляло собой циклановоизоалкановую фракцию (200—300° С), полученную из керосина путем его сернокислотной и карбамид-ной обработки для удаления ароматических и н-алкановых углеводородов. Результаты исследования углеводородного состава исходных топлив, а также данные по распределению кислорода и содержанию непредельных в конденсате даны в табл. 78 и 79. [c.124]


Смотреть страницы где упоминается термин Получение ароматических соединений из угля: [c.157]    [c.175]    [c.189]    [c.138]    [c.240]    [c.143]    [c.277]    [c.57]    [c.55]    [c.187]    [c.571]    [c.161]    [c.161]    [c.72]    [c.223]   
Смотреть главы в:

Основы органической химии 2 Издание 2 -> Получение ароматических соединений из угля

Основы органической химии Ч 2 -> Получение ароматических соединений из угля




ПОИСК





Смотрите так же термины и статьи:

Получение пз соединений



© 2025 chem21.info Реклама на сайте