Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Поляризационные кривые и пассивность

    За последние годы разработан метод защиты металлов от коррозии наложением анодной поляризации. Этот метод применим лишь к металлам и сплавам, способным пассивироваться при смещении их потенциала в положительную сторону, т. е. к металлам, анодная поляризационная кривая которых подобна приведенной на рис. 23.2. При достижении области пассивного состояния скорость растворения металла может резко упасть и оказаться меньшей, чем скорость его саморастворения в отсутствие внешней поляризации. [c.504]


Рис. 5.14. Плотности критического тока пассивации и тока в пассивной области, полученные из потенциостатических анодных поляризационных кривых для сплавов Си—N1 в 1 н. НаЗО , 25 °С 47] Рис. 5.14. <a href="/info/1640659">Плотности критического тока</a> пассивации и тока в пассивной области, полученные из потенциостатических <a href="/info/581624">анодных поляризационных кривых</a> для сплавов Си—N1 в 1 н. НаЗО , 25 °С 47]
    Как уже отмечалось в разд. 5.4, некоторые металлы (например, железо и нержавеющие стали) могут быть надежно защищены, если их потенциал сдвинуть в положительную сторону до значений, лежащих в пассивной области анодной поляризационной кривой (см. рис. 5.1). Это значение потенциала обычно поддерживают автоматически с помощью электронного прибора, называемого потенциостатом. Практическое использование анодной защиты и применение для этих целей потенциостата впервые было предложено Эделеану [26]. [c.229]

    В чистой влажной атмосфере без активатора и защитной пленки поляризационная диаграмма может быть представлена серией анодных и катодных поляризационных кривых. При внесении образца во влажную атмосферу (при i = 0) начальный потенциал железа оказывается равным 0,15—0,25 В, т. е. находится в области пассивного состояния. По мере возникновения адсорбционных слоев влаги первичная окисная пленка на железе разрушается, поверхность металла активируется, а потенциал смещается в отрицательную область (вдоль пунктирного участка анодных кривых К, V t [c.37]

    При потенциостатических измерениях изучают зависимость тока от времени при постоянном потенциале электрода, поддерживаемом при помощи потенциостата. В определенной области потенциалов ток анодного растворения металла по прошествии некоторого промежутка времени резко падает, что свидетельствует о наступлении пассивного состояния. При помощи потенциостатического метода измеряют также зависимость тока от потенциала электрода. Типичная поляризационная кривая при пассивации металла приведена на рис. 191. На этой кривой можно выделить область увеличения тока с ростом анодного потенциала (I) (активная область) область перехода от активного состояния к пассивному (II) область пассивации (III), в которой ток растворения металла мал и часто практически не зависит от потенциала, и, наконец, область анодного выделения кислорода (IV). Если раньше анодного выделения кислорода наступает вновь растворение металла, то область IV называется областью перепассивации или транс-пассивности. Механизмы растворения металла в активной области [c.380]


    На основании анодной поляризационной кривой определяют потенциал пассивации и ток в области пассивного состояния. [c.280]

    Собранную для работы ячейку заполняют исследуемым раствором и в течение часа продувают аргоном или азотом. С помощью потенциостата электрод в течение примерно 15 мин катодно восстанавливают током 10 мА/см Далее, как в работе 1, снимают анодную поляризационную кривую, начиная от стационарного потенциала, из которой затем определяют область пассивности Fe в данном растворе. [c.281]

    Выяснение связи между величиной поляризации и скоростью электродного процесса является важнейшим методом изучения электрохимических процессов. При этом результаты измерений обычно представляют в виде поляризационных кривых — кривых зависимости плотности тока электрода от величины поляризации. Вид поляризационной кривой электродного процесса отражает особенности его протекания. Методом поляризационных кривых изучают кинетику и механизм окислительно-восстановительных реакций, работу гальванических элементов, явления коррозии и пассивности металлов, различные случаи электролиза. [c.341]

    В результате снятия поляризационных кривых прямым и обратным ходом и графической обработки полученных данных в координатах анодный потенциал — плотность тока находим следующие характеристики анодного поведения меди а) потенциал пассивации б) критический ток пассивации в) потенциал активирования — при обратном ходе снятия поляризационной кривой . г) силу тока в пассивной области поляризационной кривой и д) потенциал начала выделения кислорода. [c.222]

    Поскольку пассивность свинцового анода в сернокислом растворе наступает сразу же после включения тока, то для более точного выявления хода поляризационной кривой в области пассивации принимают следующую методику исследования. [c.291]

    Свинцовый электрод поляризуют катодно при плотности тока Ю А/см2 затем, постепенно снижая поля ризующий ток до нуля, снимают кривую катодной поляризации. При поляризующем токе, равном нулю, устанавливается стационарный потенциал свинцового электрода, в этот момент изменяют направление поляризующего тока и начинают анодно поляризовать свинцовый электрод. Поляризующий ток повышают таким образом, что потенциал электрода смещается каждый раз на 10—15 мВ. В дальнейшем, когда область пассивного состояния будет пройдена, можно проводить измерения через большие интервалы смещения потенциала. При снятии поляризационной кривой вначале устанавливают задаваемое значение потенциала и затем записывают соответствующую ему величину тока. Опыт заканчивают по достижении интенсивного выделения кислорода. [c.291]

    После начала пассивации дальнейший рост электродного потенциала вызывает некоторое эквивалентное повышение поверхностного химического потенциала кислорода, следовательно, обусловливает дальнейшее упрочнение связи поверхностных катионов (т. е. повышение степени пассивации металла). В то же время создающаяся при этом большая разность химических потенциалов между поверхностью твердой фазы и объемом металлической решетки с какого-то момента вызывает встречную диффузию анионов и катионов и постепенное формирование окисленной поверхностной пленки. Это образование или утолщение пленки не вносит ничего принципиально нового в природу лимитирующего акта ионизации. Тем не менее, диффузия катионов в поверхностные вакантные узлы из нижележащих слоев решетки металла может существенно изменять кинетику процесса. Однако именно в результате диффузии, поддерживающей химический потенциал металла в поверхностном слое выше равновесного, и появляется у пассивного металла на поляризационной кривой участок постоянной скорости растворения, которого нет у индивидуального окисла. [c.441]

    Металл в пассивном состоянии практически не подвержен коррозии. хотя электродный потенциал его поверхности на сотни милливольт смещен в сторону положительных значений от потенциала коррозии. Это означает, что не выполняется уравнение анодной поляризационной кривой [c.89]

    Интересны результаты гальванографического изучения систем, содержащих перхлорат-ионы. Ранее мы видели, что присутствие 10" М K IO4 не отражается на ходе стационарной поляризационной кривой пассивного железа в 0,5 М H2SO4 при ф = 0,9 1,5 в [c.74]

Рис. 210. Анодная поляризационная кривая для железа в 1 Н, Н2304 при 25° С, измеренная потен-циостатическим методом — потенциал полной пассивности) Рис. 210. <a href="/info/581624">Анодная поляризационная кривая</a> для железа в 1 Н, Н2304 при 25° С, измеренная потен-циостатическим методом — <a href="/info/10727">потенциал полной</a> пассивности)

    Поляризационные кривые позволяют изучить кинетику электродных процессов, величину защитного тока при электрохимической. чащите, явление пассивности и др. Существует два способа снятия поляризационных кривых гальваностатический и потенциостатический. Гальваностатический метод заключается в измерении стационарного потенциала металла при пропускании через него тока определенной плотности. По ряду значений потенциалов при соответствующих плотностях поляризующего тока строят кривые катодной или анодной поляризации, т. е. зависимости Е = /(г к) или Е = /(/,г). [c.342]

    Потенциостатическая поляризационная кривая содержит больше информации, чем гальваностатическая, так как более точно соответствует действительному поведению пассивных металлов, являющихся электродами гальванических элементов. Из рис. 5.1 видно, что железо активно при малых плотностях тока и анодно корродирует с образованием Ре " согласно закону Фарадея. При увеличении тока на поверхности электрода образуется частично изолирующая пленка, состоящая из Ре504. При критическом значении плотности тока / рит 0>2 А/см (при перемешивании или [c.72]

    Влияние несимметричности реакций фарадеевское выпрямление) наблюдается особенно часто при вызываемой переменным током коррозии пассивных металлов (в основном, по определению 1 в гл. 5). Показано, что нержавеющие стали корродируют под действием переменного тока [4], алюминий в разбавленных растворах соли разрушается при 15 А/м на 5 %, а при 100 А/м на 31 % по отношению к разрушениям, вызванным при 100 А/м постоянным током той же силы. Феллер и Рукерт [4] изучали воздействие наложения переменного тока (1 В, 54 Гц) на постоянный на никель в 1 н. H2SO4. Оказалось, что на потенциостатических поляризационных кривых полностью исчезла пассивная область, а высокая плотность анодного тока сохранялась во всей области положительных потенциалов. Чин и Фу [5] отметили аналогичное поведение мягкой стали в 0,5т NajSOi при pH = 7. Плотность пассивирующего тока возрастала с повышением плотности наложенного переменного тока, достигая при плотности тока 2000 А/м и частоте 60 Гц критического значения (отсутствие пассивной области). Они нашли также, что при плотности переменного тока 500 А/м потенциал коррозии снижался на несколько десятых вольта, одновременно в отрицательную сторону сдвигалась и область Фладе-потенциала, но [c.209]

    Для достижения наилучшего ингибирующего эффекта концентрация пассиватора должна превышать определенное критическое значение. Ниже этого значения пассиваторы ведут себя как активные деполяризаторы и увеличивают скорость коррозии на локализованных участках поверхности (питтинг). Более низкая концентрация пассиватора соответствует бЬлее отрицательным значениям окислительно-восстановительного потенциала, и вследствие этого катодная поляризационная кривая пересекает анодную кривую в активной, а не в пассивной области (см. рис. 16.1). [c.262]

    В соответствии с описанным выше механизмом действия пассиваторов, следует ожидать, и это подтвердилось экспериментально, что переходные металлы должны лучше других ингибироваться пассиваторами. Для этих металлов характерна форма анрдной поляризационной кривой, представленной на рис. 16.1. Она сви-детельствует о том, что пассивное состояние их поддерживается при низкой плотности тока. Меньший ингибирующий э ект может быть достигнут на переходных металлах, таких как Mg, u, Zn, Pb, например, с помощью хроматов. Защита этих металлов, по-видимому, обусловлена в основном образованием относительно толстых создающих диффузионный барьер пленок, которые состоят из смеси нерастворимых хроматов и оксидов металлов. Существует также вероятность, что адсорбция ионов СГО4 на металлической поверхности, уменьшая плотность тока обмена для реакции М М + -f 2ё, вносит определенный вклад в понижение скорости реакции. Однако это еще не доказано. [c.266]

    Возникновение электрохим ической пассивности платины было обстоятельно изучено А. Н. Фрумкиным, А. Шалыгиным, а также Б. В. Эрщлером. Они изучали поляризационные кривые процесса заряжения платинового электрода, сопоставляя электродный потенциал я количество электричества, затрачиваемого на отдельные стадии процесса . Было показано, что для достижения пассивности металла совсем не обязательно, чтобы атомы кислорода целикам закрывали всю поверхность металла. Достаточно неко орой доли поверхности (около 0,1—0,2), чтобы вызвать пассивность. Это запирающее действие объясняется действием силовьсх полей адсорбированных атомов, перекрывающих пустую пове рхность 2. [c.116]

    Опыты проводят в электролитах, составы которых приведены в табл. 4.1. Поляризационные кривые снимают в гальваноста-тическом режиме. Во всех опытах используют аноды из олова, В электролит № 3 аноды загружают под током с целью формирования пассивной пленки золотисто-желтого цвета. [c.29]

    В определенных условиях на пассивирующихся металлах наблюдаются периодические колебания потенциала в гальваностатических условиях или колебания тока при Я=соп51. Это объясняется наличием падающей характеристики на поляризационной кривой пассивирующихся металлов, т. е. области с (д1 /дЕ)<С.О, и с закономерным переходом электрода из активного состояния в пассивное и обратно. Существует аналогия между периодическими электродными процессами и явлениями нервной проводимости. Например, активация определенного участка железной проволоки в азотной кислоте приводит к возникновению активационных волн, закон распространения которых вдоль проволоки имеет сходство с законом распространения нервного импульса (модель нервов Оствальда — Лилли). Поэтому периодические процессы при пассивации используются для моделирования механизма действия нервных клеток — нейронов. [c.371]

    При слишком высокой анодной плотности тока, растворение олова прекратится и будет происходить только разряд гидроксильных ионов. На анодной поляризационной кривой (рис. 83) наступление полной пассивности будет соответствовать резкому скачку потенциала в область электроположительных значений. Интервал плотностей токов, в котором происходит преимущественное образование зависит от условий электролиза концентрация щелочи, температура электролита и т. д.). В нашем примере (рис. 83) этот процесс протекает в интервале 1,5—3,0а1дм . [c.204]

    К числу металлов с низкой электронной проводимостью окислов принадлежат алюминий, титан, цирконий, тантал, известные своей способностью подвергаться оксидированию при высоких анодных потенциалах (см. 6 этой главы). Что касается растворения металла в пассивном состоянии, то оно существенно отличается от перехода в раствор ионов металла на активном участке поляризационной кривой. Это отличие прежде всего количественное. При сохранении постоянного потенциала анодной ток в пассивной области обнаруживает тенденцию к постепенному и очень медленно идущему уменьшению, снижаясь до крайне низких значений порядка Ь "а/см . Такой спад тока растягивается на длительные промежутки времени. Поэтому приводимые значения плотности тока в пассивном состоянии следует рассматривать как довольно условные величины, относящиеся к какой-либо определенной выдержке металла при заданном потенциале. Отличие процесса перехода в раствор ионов металла в пассивной области от активного растворения заключается в том, что такой переход протекает в три последовательные стадии. Одной из них является переход катионов металла в окисную пленку. Далее следует миграция ионов под действием электрического поля катионов — к раствору, а анионов кисло-юда или ионов гидроксила — к границе раздела окисел — металл. Наконец, последняя стадия представляег переход катионов из окисной пленки в раствор, т. е. самый процесс растворения пленки. Скорость каждой из трех этих стадий зависит от потенциала, и на этом основании процесс растворения металла в пассивном состоянии можно рассматривать как электрохимический. В противоположность этому в классической теории пассивности принимается, что ионы пассивного металла поступают в раствор в результате химического растворения материала пассивирующей окисной пленки в окружающем электролите. [c.202]

    В предыдущей работе применялся гальваностатический метод снятия поляризационных кривых. При исследовании необратимых явлений на аноде и, в частности, при изучении анодной пассивности предпочтительнее потеЦциостатический метод снятия поляризационных кривых, при котором постоянным поддерживается потенциал электрода, а сила тока, изменяясь со временем, в конечном счете принимает некоторое установившееся значение. Полная кривая анодной поляризации меди в нейтральном хлоридном растворе, полученная потенцио-статическим методом, приведена на рис. 109. Кривая характеризуется наличием трех отчетливо выраженных ветвей. Ветвь а охватывает область потенциалов, непосредственно примыкающих к стационарному потенциалу медного электрода со стороны более положительных зна-220 [c.220]

    При прямом методе снятия потенциостатической кривой после обычной предварительной подготовки поверхности обоих электродов и выдержки в растворе в отсутствие внешней поляризации потенциал поляризуемого электрода постепенно повышают, проходя последовательный ряд значений от стационарного потенциала (около 0,3 б в растворе универсальной буферной смеси с добавкой 0,5 н. Na I) до 2 в с интервалом в 0,1 б. Продолжительность выдержки на каждой точке целесообразно принять одинаковой, например 2 мин, 5 мин и т. д., регистрируя каждый раз силу тока по показаниям микроамперметра. Более длительная выдержка необходима в области потенциалов, в которой происходит пассивация электрода (или при переходе от пассивного состояния в активное при обратном ходе снятия поляризационной кривой). [c.222]

    Исследование пассивности проводят путем снятия потенциоста-тических поляризационных кривых. С помощью потенциостата на изучаемый образец металла подают строго определенный электродный потенциал и регулируют скорости анодного процесса (анодную скорость тока). Эту операцию повторяют неоднократно в необходимом диапазоне потенциалов, в результате чего получают анодную поляризационную кривую металла. [c.90]

    Для получения полной анодной кривой бьша применена разработан ная И.Л. Розенфельдом методика предварительной активации поверх ности, которая дает поляризационные кривые, характерные для пассиви рующегося металла с областями активного растворения, активно-пас сивного и пассивного состояния. На рис. 22 приведены анодные поляри зационные кривые алюминия АД1 и алюминиевых покрытий при ско рости наложения потенциалов 10 мВ/с в средах 0,01 н. Na l. В 0,01 н растворе Na l стационарный потенциал стали с электрофоретическим покрытием при гидростатическом обжатии на 0,1 Вис гидроимпульс ным - на 0,2 В положительнее потенциала чистого алюминия и состав ляет - 1,3 и -1,2 В соответственно. [c.82]


Смотреть страницы где упоминается термин Поляризационные кривые и пассивность: [c.479]    [c.506]    [c.304]    [c.37]    [c.307]    [c.93]    [c.94]    [c.376]    [c.29]    [c.299]    [c.299]    [c.366]    [c.386]    [c.366]    [c.369]    [c.218]    [c.221]    [c.366]    [c.78]   
Смотреть главы в:

Коррозия и защита от коррозии -> Поляризационные кривые и пассивность




ПОИСК





Смотрите так же термины и статьи:

Пассивность

Поляризационная кривая



© 2025 chem21.info Реклама на сайте