Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Пассивность платины

    Разряд анионов из раствора на инертном электроде (платине, золоте, пассивном металле). Примером такого процесса может служить анодное выделение кислорода при электролизе воды [c.28]

    Ванадий, ниобий и тантал взаимодействуют с кислородом,галогенами, азотом, водородом, углеродом и другими веществами — оксидами, кислотами и т. д. Однако химическая активность этих металлов проявляется только при высоких температурах, когда разрушается защитная пленка, делающая нх пассивными при обычных условиях. Особенно прочная пленка образуется иа поверхности тантала, который по химической стойкости не уступает платине. [c.276]


    Условия электролиза. Реакция электрохимического окисления хлоратов протекает при высоких положительных потенциалах (более 2,0 В отн. н. в.э.), поэтому анод должен обладать высоким перенапряжением кислорода и сохранять пассивные свойства при этих значениях потенциала. Лучше всего этим требованиям удовлетворяет гладкая платина. В промышленности, как правило, используют платино-титановые аноды. [c.187]

    Химические свойства. Ванадий, ниобий и тантал реагируют с кислородом, галогенами, азотом, углеродом, водородом и другим веществами (пары воды, СОа и т. д.). Однако их химическая активность проявляется только при высоких температурах, когда разрушается защитная оксидная пленка, делающая их пассивными в обычных условиях. Особенно прочная пленка наблюдается у тантала, который по стойкости не уступает платине. [c.91]

    Б. В. Эршлер, О пассивности платины. Труды второй конференции по коррозии металлов, т. II, изд. Академии Наук СССР, 1943. [c.85]

    Б. Б. Эршлер, О пассивности платины, ЖФХ, 18, 131 (1944). [c.1215]

    Несмотря на пассивность самой платины м сплавов ее с иридием, при электролизе сульфатов и хлоридов наблюдаются ее потери (табл. 26) вслед- [c.131]

    Пассивность металлов. Состояние повышенной коррозионной устойчивости металлов в условиях, когда термодинамически возможно их взаимодействие с веществами, находящимися в окружающей среде, называется пассивным-Известна устойчивость железа в концентрированной НКОд, никеля и железа — в щелочных растворах, алюминия — па воздухе, платины и золота — во многих агрессивных средах и т. п. В определенных условиях некоторые металлы практически не способны к процессу анодного растворения, например свинец в растворах сульфатов. [c.519]

    Эта особенность хрома приводит к тому, что в различных условиях хром ведет себя то как активный металл, подобно железу, цинку (и это представляется естественным, так как в ряду напряжений металлов хром расположен между железом и цинком), то как неактивный пассивный металл, подобно золоту, платине (что кажется непонятным с точки зрения расположения металла в ряду напряжений). [c.340]

    Существенным фактором, влияющим на ход электролиза, является анодная плотность тока. Наивысшие выходы по току получаются при анодной плотности тока 5000—10000 а м , на практике чаще применяют—6000—7000 а/ж . Более высокие анодные плотности тока существенно не улучшают выход по току, но в то же время способствуют повышению напряжения на ванне. Что касается катодных плотностей тока, то желательно в пределах конструктивных возможностей работать с пониженными плотностями тока. Обычно катодная плотность тока находится в пределах 500— 600 а/м . Материалом для анодов, при всех вариантах электролитического получения надсернокислых соединений, является платина. С целью экономии платины применяют тонкую фольгу (толщиной 0,05 мм) или проволоку, а также комбинированные аноды из тантала или титана (пассивного при анодной поляризации) с приваренными к нему листочками платины (комбинированные аноды позволяют применять более тонкие платиновые листочки). [c.360]


    Пленочной теории пассивности противоречит обнаруженное резкое торможение скорости растворения платины в соляной кислоте, обусловленное адсорбцией таких количеств кислорода, которых явно недостаточно для образования одного монослоя. Действие адсорбированного кислорода в этом случае аналогично действию малейших следов яда, отравляющего поверхность катализатора. Согласно электрохимической теории пассивности, замедление скорости анодного процесса на пассивном металле объясняется не тем, что его поверхность изолируется от раствора окисной пленкой. Наступление пассивного состояния в рамках этой теории связывается с изменением энергетического состояния поверхностных атомов металла. При обсуждении механизма анодного растворения металлов в активном состоянии было показано, что этот процесс протекает преимущественно на наименее прочно связанных атомах дислоцированных в дефектных местах кристаллической решетки. Именно такие атомы в первую очередь вступают в адсорбционное взаимодействие с кислородом воды, в определенной степени теряя свойственный им избыток энергии. Такой атом, связанный с кислородом, переходит иа более глубокий уровень энергии, что влечет за собой повышение энергии активации ионизации и, в конечном счете, торможение скорости ионизации металла. [c.203]

    Пленочной теории пассивности противоречит обнаруженное Эршлером резкое торможение скорости растворения, платины в соляной кислоте, обусловленное адсорбцией таких количеств кислорода, которых явно недостаточно для образования одного монослоя. Действие адсорбированного кислорода в этом случае аналогично действию малейших следов яда, отравляющего поверхность катализатора. Согласно электрохимической теории пассивности, замедление скорости анодного процесса на пассивном металле объясняется не тем, [c.119]

    Коррозионное поведение благородных металлов — золота, платины, серебра — не определяется наличием пассивной пленки. Стойкость этих металлов — присущее им термодинамическое свойство. [c.17]

    Серовато-белый металл относительно мягкий, очень тягучий, ковкий, тугоплавкий. В особых условиях образует губчатую платину (с сильно развитой поверхностью), платиновую чернь (тонкодисперсный порошок) и коллоидную платину. Благородный металл занимает последнее (самое электроположительное) место в электрохимическом ряду напряжений. Легко сплавляется с платиновыми металлами (кроме рутения и осмия), а также с Fe, Со, Ni, u, Au и другими, с трудом сплавляется с Sb, Bi, Sn, Pb, Ag. Химически весьма пассивный не реагирует с водой, кислотами (за исключением царской водки ), щелочами, гидратом аммиака, монооксидом углерода. Переводится вводный раствор хлороводородной кислотой, насыщенной С1г. При нагревании окисляется кислородом, галогенами, серой, при комнатной температуре тетрафторидом ксенона Губчатая платина и платиновая чернь активно поглощают значительное количество Нг, Не, О2. В природе встречается в самородном виде (в сплавах с Ru. Rh, Pd, Os, Ir). Получение см. 907 917 919  [c.454]

    На рис. У-15 приведена зависимость изменения толщины платинового слоя ПТА от длительности эксплуатации для нескольких электродов в двух электролизерах. Начальная толщина слоя платины электродов была различна, скорости растворения платины имели практически одинаковые значения. После 1500—2000 дней работы измерения толщины платинового слоя р-толщиномером давали значительный разброс. Средняя скорость растворения за весь период работы платинового слоя ПТА по результатам испытания электродов в семи электролизерах типа БГК-17 приведена на рис. У-16. Ясно видно уменьшение скорости растворения платины со временем, особенно сильное в начальный период. Средняя скорость растворения платины за 2000—2500 дней в 1,5—2 раза ниже, чем за первые 500 дней. Пассивность ПТА, полученных осаждением платины из [c.159]

    Даже в том случае, когда носителю приписывают пассивную роль, очевидно, что его структура и химические свойства поверхности оказывают большое влияние на свойства нанесенного катализатора. Так, например, пористость, удельная поверхность и природа поверхности носителя влияют на степень дисперсности нанесенного металла. Кроме того, пористость носителя определяет степень доступности нанесенного металла для реактантов, и, наконец, вещество, используемое в качестве носителя металлической фазы, может проявлять собственную каталитическую активность. Хорошо известный пример этого — бифункциональные платина-алюмосиликатные и платина-цео-литные катализаторы риформинга углеводородов, этой причине в главе, посвященной носителям, рассмат/ ивается не только их структура, но и освещаются некоторые общие вопросы химии поверхности носителей. [c.9]


    Лепинь [263] дает интерпретацию пассивного состояния металлов, основанную на теории окисных пленок Фарадея, и предполагает, что пассивность металлов вызывается поверхностными соединениями, в особенности кислородными, свойства которых существенно отличаются от свойств продуктов объемной реакции. Чем меньше расстояние между атомами, тем труднее идут объемные реакции и тем благоприятнее условия для поверхностных реакций. Описывая каталитическую активность металлов при гидрогенизации бензола, Вест-линг [472] расположил металлы по коротким атомным расстояниям в решетке в ряд никель, кобальт, медь, рутений, родий, иридий, осмий, палладий и платина он утверждал, что активность металла снижается пропорционально удалению короткого атомного расстояния от обоих пределов. [c.244]

    Возникновение электрохим ической пассивности платины было обстоятельно изучено А. Н. Фрумкиным, А. Шалыгиным, а также Б. В. Эрщлером. Они изучали поляризационные кривые процесса заряжения платинового электрода, сопоставляя электродный потенциал я количество электричества, затрачиваемого на отдельные стадии процесса . Было показано, что для достижения пассивности металла совсем не обязательно, чтобы атомы кислорода целикам закрывали всю поверхность металла. Достаточно неко орой доли поверхности (около 0,1—0,2), чтобы вызвать пассивность. Это запирающее действие объясняется действием силовьсх полей адсорбированных атомов, перекрывающих пустую пове рхность 2. [c.116]

    Применение высокочувствительного радиохимического метода измерения скорости растворения платины при анодной поляризации [11, 43—48] позволило провести систематические исследования скорости растворения платины в кислых растворах. Было обнаружено значительное увеличение скорости растворения пассивной платины при росте положительного потенциала и установлено постоянство выхода по току на растворение платины в тех случаях, когда на аноде основным процессом являлся процесс выделения 1П1слорода [49—51]. [c.144]

    Мояшо предположить, что когда поверхность не заполнена пассивирующим соединением, решающую роль в возрастании пассивности металла с переменной валентностью должен играть рост заполнения новерхности или увеличение плотности слоя адсорбированного кислорода. Это, по-видимому, имеет место в случае роста пассивности платины прн постоянном потенциале во времени. Когда поверхность почти заполнена кислородом, рост пассивности больше должен зависеть от изменения структуры пассивирующего соединения и связанного с этим увеличения прочности связи адсорбированного вещества с поверхностью, без существенного изменения состава адсорбционного слоя. Последний тип изменения свойств новерхност- [c.151]

    Платиновые аноды стойки в растворах хлористых металлов и сернокислых солей и пассивны при обычных плотностях тока. При очень низких плотностях тока в кислых растворах хлористых металлов аноды могут стать активными [3]. При наложении переменного тока порядка 5—20 а /дм в кислых растворах хлористых металлов и в 50—60% растворах серной кислоты платина растворяется с заметной скоростью, что используется при метлллографическом травлении. Природа пассивности платины усиленно изучается [4]. [c.365]

    Еще в XVIII веке было замечено, что железо хорошо реагирует с разбавленной азотной кислотой, но не подвергается видимому воздействию концентрированной [1]. При перенесении железа из концентрированной азотной кислоты в разбавленную временно сохраняется состояние устойчивости к коррозии. Шон-бейн [2 ] в 1836 г. назвал железо, находящееся в коррозионноустойчивом состоянии, пассивным. Он показал также, что железо можно перевести в пассивное состояние путем анодной поляризации. В это же время Фарадей [3] провел несколько экспериментов, показывающих, среди прочего, что элемент, состоящий из пассивного железа и платины, в концентрированной азотной кислоте почти не продуцирует ток, в отличие от амальгамы цинка в паре с платиной в разбавленной серной кислоте. [c.70]

    Для металлов переходных групп характерна сильно пониженная способность к растворению в кислотах и к анодному растворению после обработки поверхности этих металлов окислителями. Такое состояние металлов называется пассивностью. Для хрома, золота и платины достаточно воздейстиия кислорода воздуха для того, чтобы эти металлы перешли в пассивное состояние. Если железо погрузить в концентрированную азотную кислоту, то оно становится пассивным и не растворяется в разбавленной азотной кислоте. Можно перевести в пассивное состояние железо, хром, никель и другие металлы, обработав их окислителями, например опустив в раствор бихроматов, нитратов и др. [c.635]

    Не всякие торможение коррозиониого процесса может быть свя.зано с явлениями пассивации так, например, низкую скорость растворения металлов и сплавов, обусловленную их термодинамической устойчивостью (золото, платина и др), ие иа-зыв ют пассивностью. Защита металлов и сп. авов лакокрасоч- [c.59]

    Подобное повышение пассивности было также установлено П. Д. Тома-шовым и Р. М. Альтов-ским для титана в растно-рах серной и соляной кислот ири легировании его платиной п палладием. [c.67]

    Важное достижение в повышении коррозионной стойкости пассивирующихся сплавов — так называемое катодное легирование. Как было показано исследованиями Н. Д. Томашова и Г. П. Черновой [42], повышение устойчивости сплавов в условиях возможности пассивного состояния может быть осуществлено введением в сплавы дополнительных катодных составляющих. Например, легирование нержавеющих сталей типа 1Х18Н9 присадками платины, палладия или меди в небольших количествах позволило значительно повысить их коррозионную стойкость до сравнению со сталями без присадок. Сталь Х27 при дополнительном ее легировании пла- [c.38]

    Механизм торможения анодного процесса лемосорбционной, или барьерной, пленкой, но-видимому, не может быть сведен к механической (кроющей, изолирующей) защите поверхности, а имеет электрохимический и, кроме того, полупроводниковый характер. Если в пассивном слое отсутствует ионная проводимость, а перенос зарядов осуществляется движением электронов, — состояние пассивного слоя и его величина во времени не изменяются. Такие электроды полностью устойчиво пассивны при анодной поляризации (например, платина в большинстве сред или никель в щелочном растворе). Если пассивирующая пленка имеет помимо электронной также и ионную проводимость, образуется менее совершенная пленка. При этом в результате переноса анионов через защитную пленку будет происходить ее утолщение с затормаживающейся скоростью вследствие возрастающего сопротивления пленки. [c.28]

    При сопоставлении электрокаталитической активности различных материалов следует учитывать целый ряд факторов. Прежде всего необходимо принимать во внимание зависимость скорости процесса от потенциала электрода-катализатора, она часто на разных электродах имеет разный наклон. Поэтому порядок активности будет зависеть от интервала потенциалов, в котором проводится сравнение. Сравнение следует проводить либо при заданном потенциале относительно одного и того же электрода сравнения, либо при равновесном потенциале для данного процесса, если этот потенциал известен или может быть рассчитан. Сопоставление при равновесном потенциале страдает тем недостатком, что проводится в условиях, существенно отличающихся от условий практического использования данного процесса. Далее необходимо принимать во внимание возможность существенного изменения свойств материала за счет структурных факторов. Кроме того, порядок активности может меняться при изменении температуры, при которой проводится процесс. Например, рутений, будучи пассивным в реакции электроокнсления метанола при 20° С, при 80° С по активности превосходит платину в некотором интервале потенциалов (О. А. Петрий, В. С. Энтина). Наконец, следует учитывать, что при изменении природы катализатора иногда происходит и смена лимитирующей стадии процесса. [c.297]

    Очень пассивные металлы типа золота и платины могут быть растворены смесью одного объема концентрированной азотной кислоты HNO3 с тремя объемами крепкой соляной кислоты НС1. Такая смесь называется царской водкой, окислителем в ней является атомарный хлор, образующийся в результате реакции и отщепляющийся от хлорида нитрозила  [c.236]

    Платиновые металлы и их применение. Чистые платиновые металлы пластичны и прочны. Примеси сильно изменяют их свойства. Электродные потенциалы положительные — порядка 1 в. Иридий и платина очень пассивны. Более активны по отношению к кислороду и галогенам осмий, затем рутений. Рутений был выделен последним из всех платиновых металлов казанским химиком А. К. Клаусом в 1823 г. из уральских месторождений платины. Свое название он получил в 1844 г. в честь России. Порошок его при высокой температуре сгорает до КиОг, а при 1000° С и выше образует Ки04. Порошок осмия уже при комнатной температуре образует тетраоксид 0з04. Это твердое желтое вещество, температура плавления 40 С. Водный раствор его нейтрален. Окислитель. [c.353]

    Недостатком платиновых анодов является их высокая стоимость. С целью экономии драгоценного металла были предложены составные аноды, в которых платина нанесена тонким слоем на основу, сохраняюш ую пассивное состояние за счет существования на ее поверхности плотных оксидных пленок. В качестве такой основы наиболее широко применяется титан. [c.15]

    Все эти три вида пассивных систем имеют значение для техники анодной защиты (см. раздел 20). При заданной среде кинетика катодной промежуточной реакщ1и и тем самым наклон кривых типов I, II или III зависят также от материала. Путем легирования каталитически действующими элементами, например платиной, палладием, серебром и медью, стремятся достичь случая III. В принципе при этом речь идет о гальванической анодной защите с катодом, питаемым от постороннего источника [33]. [c.69]

    Это общее утверждение впрочем не означает, что сплавы со сте-хиометрической потерей материала от коррозии совершенно непригодны для изготовления заземлителей на станциях катодной защиты. Иногда в качестве материала для анодных заземлителей применяют даже железный лом кроме того, при электролитической обработке воды используют алюминиевые аноды (см. раздел 21.3). Цинковые сплавы находят применение как материал для анодов лри электролитическом травлении для удаления ржавчины, чтобы предотвратить образование гремучего хлорного газа на аноде. Для внутренней защиты резервуаров при очень низкой электропроводности содержащейся в них воды на магниевые протекторы иногда накладывают ток от внешнего источника с целью увеличить токоотдачу (в амперах) (см. раздел 21.1). По так называемому способу Кателько наряду с алюминиевыми анодами (протекторами) намеренно устанавливают медные, чтобы наряду с защитой от коррозии обеспечить также и предотвращение обрастания благодаря внедрению токсичных соединений меди в поверхностный слой. Впрочем, все такие области применения являются сугубо специальными. На практике число материалов, пригодных для изготовления анодных заземлителей, сравнительно ограничено. В основном могут применяться следующие материалы графит, магнетит, ферросилид с различными добавками, сплавы свинца с серебром, а также так называемые вентильные металлы с покрытиями из благородных металлов, например платины. Вентильными называют металлы с пассивными поверхностными слоями, не имеющими электронной проводимости и сохраняющими стойкость даже при очень положительных потенциалах, например титан, ниобий, тантал и вольфрам. [c.198]

    Особый интерес представляет применение благородных металлов платиновой группы при так называемом катодном легировании сталей, разработанном группой ученых АН СССР. Сущность катодного легирования заключается в повышении эффективности катодных процессов в пассивирующихся системах, в результате чего потенциал системы смещается в сторону положительных значений и она переходит в пассивное состояние. В качестве катодных легирующих добавок применяют небольшие количества (0,1—0,5%) палладия, платины, рутения и др. [c.149]

    Изучено [100а] поведение титана, платины и стальных катодов в хлорид-хлоратных растворах. Плотность тока катодной защиты стальных поверхностей должна быть вьш1е предельного диффузионного тока процесса восстановления гипохлорита. Титан и платина в хлорид-хлоратных растворах в присутствии активного хлора пассивны и без наложения тока поляризации. [c.397]

    В хлорид-хлоратных растворах и в присутствии гипохлорита, титан так же как и платина, имеет значительно более положительный стационарный потенциал и сохраняет пассивность как при катодпой поляризации, так и в ее отсутствии [ 130]. [c.259]

    При применении нерастворимых анодов (платина, платинированный титан, сгаль 12Х18Н9Т) пассивное поведение серебра в первую очередь связано с термодинамической неустойчивостью электролита, при определенных значениях pH и потенциалов (рис. 80). [c.162]

    Муравьиная кислота, является восстановителем, поэтому иа хромистых сталях, кремнистых чугунах не образуется пассивной плеики н при повышенных температурах этн сплавы нестойки. Тнтаи стоек в кислоте любой концентрации при температуре до 60° С. В кипящей кислоте концентраций >25% он реагирует с большой скоростью. При температурах >6№ С н концеитрации кислоты 25—50% на коррозионную стойкость титана влияют многие факторы (ничтожные прнмесн, сплошность пассивной пленки). Прн более высоких температурах пассивная пленка разрушается и скорость коррозии титана возрастает. Свннец стоек в растворах кислоты, но нестоек в щелочных растворах ее солей. Платина и серебро стойки в растворах кислоты без доступа кислорода. Имеются Сведения о коррозионном растрескива ИНН хромистых сталей в разбавленных растворах кислоты. Для изготовления деталей арматуры применяются безоловянистые бронзы Бр- А7, Бр. АЖ 9-4. Бр. АЖН 10-4-4. Высокой коррозионной стойкостью обла дают хромониксльмо--лнбденовые и кобальтовые сплавы типа стеллитов. [c.832]

    Сурьма (III) при некоторых условиях мешает процессу электролиза возможно, это объясняется тем, что образование Sb204 на поверхности электрода делает его пассивным при дальнейшем окислении мышьяка. Оказалось, что предварительная поляризация платиновых электродов приводит к таким же результатам мышьяк (III) медленно реагирует с оксидной пленкой платины на анодно поляризованных электродах до восстановления чистой поверхности платины. [c.46]

    Что касается са1 юй величины выхода по току (в расчете на 4-ва-лснтную платину), то из таблицы 5 видно, что при заданных условиях электролиза выход по току практически не зависит от продолжительности процесса осаждения. При 0,( = 6,6 а/дм и 60° он составлял 15—16%. Детальное исследование поляризации, сопутствующей электроосаждению платины на титане, проведенное с помощью осциллогра-фической записи потенциала катода на приборе С-1-19, свидетельствует о наличии первоначального торможения процесса в результате катодной пассивности, связанной с образованием первичных центров кристаллизации (рис. I). [c.77]


Смотреть страницы где упоминается термин Пассивность платины: [c.40]    [c.294]    [c.446]    [c.440]   
Электрохимия металлов и адсорбция (1966) -- [ c.136 , c.148 , c.151 ]




ПОИСК





Смотрите так же термины и статьи:

Пассивность



© 2025 chem21.info Реклама на сайте