Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Теория диффузного электрического слоя

    Теория диффузного электрического слоя [c.206]

    Такие тонкие пленки получаются только при достаточной концентрации электролита в растворе. При более низких концентрациях электролита диффузные электрические слои приводят к образованию пленок большей толщины. По мере увеличения концентрации электролита равновесная толщина пленок монотонно убывает, что находится в соответствии с теорией Дерягина—Ландау для П г (при вычислениях делается поправка на n J. [c.228]


    Дальнейшее развитие диффузная теория двойного электрического слоя получила в трудах советских ученых А. Н. Фрумкина и Б. В. Дерягина. [c.315]

    Согласно теории двойного электрического слоя падение потенциала в плотном слое (линия АА1, рис. 30) происходит линейно (в соответствии с теорией плоского конденсатора), а в диффузном слое эта прямолинейность не сохраняется (здесь падение потенциала происходит по экспоненциальному закону, кривая А С, рис. 30). [c.81]

    Двойной слой на границе раствор —металл создается электрическими зарядами, находящимися на металле, и ионами противоположного знака противоионами), ориентированными у поверхности электрода. В формировании ионной обкладки двойного слоя принимают участие как электростатические силы, под влиянием которых противоионы подходят к поверхности электрода, так и силы теплового (молекулярного) движения, в результате действия которых двойной слой приобретает размытое, диффузное строение. Кроме того, в создании двойного электрического слоя на границе металл —раствор существенную роль играет эффект специфической адсорбции поверхностно-активных ионов и молекул, которые могут содержаться в электролите. Теория двойного электрического слоя сложилась на основе работ Гельмгольца, Штерна, А. И. Фрумкина и др. [c.473]

    Свойства разбавленных эмульсий (С< <0,1% об). Такие эмульсии, как правило, тонкодисперсны и близки по свойствам к лиофобным золям. В таких эмульсиях из-за малых размеров капель наблюдаются броуновское движение, диффузия, рассеяние света и т. д., они являются седиментационно устойчивыми. Их агрегативная устойчивость так же, как в лиофобных золях, определяется наличием диффузных электрических слоев. Коагуляция под действием электролитов подчиняется правилу Шульце-Гарди. К разбавленным эмульсиям приложима теория [c.247]

    Основу всех ионных теорий представляет уравнение Нернста для расчета работы., совершаемой ионом при его перемещении в растворе из бесконечности до точки на твердой поверхности. Затем появилась теория диффузного двойного слоя Гуи—Чэн-мана, основанная на уравнениях Пуассона—Больцмана. Согласно этой теории, движение катионов вблизи поверхности поддерживается тепловой энергией, причем катионы притягиваются к поверхности соответствующими отрицательными зарядами. Этот же закон применим и для описания того, как молекулы окружающей землю атмосферы удерживаются вблизи поверхности под действием сил земного притяжения. Затем было понято, что катионы больших размеров не могли приближаться к отрицательным зарядам на поверхности так же, как катионы меньших размеров. Штерн ввел поправку,.учитывающую размер иона, и предложил рассматривать некоторый слой, который затем стал называться слоем Штерна . В этом слое вблизи отрицательно заряженной поверхности накапливается определенное количество, катионов, которые в основном оказываются заторможенными. Таким образом, формируется плотный двойной электрический слой . [c.918]


    Элементарная теория диффузного двойного слоя позволяет рассчитать только средние значения ф потенциалов. Для нахождения скорости реакции в выражение для тока [уравнение (79)] следовало бы подставлять не эти средние значения 1-потенциалов, а их локальные значения в точках, соответствующих максимальному приближению аниона к катиону в двойном слое эти значения, однако, до сих пор определить не удалось. Их величины могут заметно отличаться от средних значений [см. (63)]. Зависимость скорости электровосстановления от радиуса катиона, отрицательный температурный коэффициент тока в минимуме и торможение реакции восстановления некоторых анионов при добавлении в раствор двухвалентных невосстанавливающихся анионов [101] показывают, что электровосстановление анионов происходит в непосредственной близости от одного из катионов в двойном слое. Иначе говоря, восстанавливающиеся анионы связаны с поверхностью электрода катионными мостиками [112]. В отличие от концепции ионных пар Гейровского [123, 124], который считал их находящимися в растворе, здесь предполагается образование ионных пар в двойном электрическом слое. Следовательно, определяющей стадией при электровосстановлении анионов может быть перенос электронов на анионы, связанные с поверхностью катионными мостиками, а в некоторых случаях и самообразование ионных пар внутри двойного электрического слоя, облегчающее проникновение анионов через противодействующее электрическое поле двойного слоя. [c.223]

    Возникновение расклинивающего давления в тонких жидких слоях обусловлено, главным образом, двумя факторами. Первый — это электростатическое взаимодействие в слое. Обычно две поверхности жидкого слоя (например, поверхности двух коллоидных частиц) электрически заряжены, и в жидкости вблизи них находятся диффузные электрические слои противоионов. Когда толщина жидкого слоя достаточно велика, эти слои расположены далеко друг от друга и не взаимодействуют (рис. 50,а). При малой толщине жидкого слоя диффузные электрические слои частично перекрываются и ионы в них находятся под одновременным действием двух частиц (рис. 50, б). В результате этого происходит перераспределение ионов, диффузные слои деформируются, и как, например, при деформации двух прижатых друг к другу резин, появляется противодействие — возникают силы отталкивания между двумя поверхностями. Эти электрические силы проявляются в электростатическом расклинивающем давлении Пэл- Дерягин и Ландау на основании теории двойного электрического слоя вывели следующее выражение для Пэл  [c.101]

    Свойства эмульсий сильно зависят от концентраций капель в дисперсионной среде. Разбавленными называют такие эмульсии, в которых объем капель не превышает 0,1% общего объема. Они, как правило, тонкодисперсны и близки по свойствам к лиофобным золям. Из-за малых размеров капель такие эмульсии седиментационно устойчивы, в них наблюдаются броуновское движение, диффузия, рассеяние света и т. п. Их агрегативная устойчивость также определяется наличием диффузных электрических слоев, а коагуляция под действием электролитов подчиняется правилу Шульце—Гарди к ним приложима теория устойчивости лиофобных золей. Широко известный пример такой разбавленной эмульсии — конденсат отработанного пара в паровой машине в нем диспергированы мельчайшие капельки машинного масла. [c.131]

    Исследования с пленками из водных растворов электролитов [И, 12] подтвердили теорию Дерягина — Ландау об электростатической составляющей расклинивающего давления Г47]. Это дает новые возможности для исследования диффузных электрических слоев и характеризующего их фо-потенциала. Возможность подбирать условия эксперимента с равновесными пленками так, чтобы они соответствовали надежному и простому применению теории, позволяет таким путем получать гораздо более полные данные фо, чем те, которые дают измерение электрокинетического потенциала. Эти возможности еще далеко не использованы и соответствующие исследования пока лишь начаты. До настоящего времени удалось определить надежно фо для чистой воды (около 20 мв), а также исследовать влияние некоторых ПАВ на величину Фо [48]. Оказалось, что зависимость фо от концентрации ПАВ качественно совпадает с кривой насыщения, найденной ранее [51, и что максимальные значения фо для различных ПАВ различны. К сожалению, пока еще не удалось найти ПАВ, адсорбция которого выражалась бы простой адсорбционной изотермой и давала достаточно высокие Фо для того чтобы проверить и интерпретировать количественно зависимость Фо 0т степени насыщения адсорбционного слоя. Эта задача, как и многие другие, ожидает своего решен-ния . [c.55]

    Таким образом, теория Гуи — Чепмена объясняет зависимость толщины двойного слоя от температуры среды, концентрации и валентности ионов и, в согласии с гидродинамикой, может объяснять электрокинетические явления. Она оперирует теми же физическими представлениями, что и возникшая несколько позднее теория сильных электролитов Дебая — Гюккеля. Первая рассматривает строение плоского диффузного электрического слоя вблизи заряженной поверхности, а вторая — сферического слоя вокруг заряженного иона. [c.32]


    Теория Гуи оправдывается лучше всего там, где теория Гельмгольца оказывается неприложимой, и наоборот, последняя дает лучшую сходимость с опытом в тех случаях, когда первая дает неверные результаты. Отсюда вытекает, что строение двойного электрического слоя должно представлять собой некоторое сочетание моделей, предложенных Гельмгольцем и Гуи. Такое предположение было сделано Штерном (1924) в его адсорбционной теории двойного электрического слоя. Штерн полагал, что определенная часть ионов удерживается вблизи поверхности раздела металл — электролит, образуя гельмгольцевскую обкладку двойного слоя с толщиной, отвечающей среднему радиусу ионов электролита . Остальные ионы, входящие в состав двойного слоя, распределяются диффузно с постепенно убывающей плотностью заряда. Для диффузной части двойного слоя Штерн, так же как и Гуи, пренебрег [c.272]

    Гуи [92] и Чепмен [93] независимо друг от друга предложили теорию диффузного двойного слоя, учитывающую действие теплового движения. Эта теория в принципе аналогична расчету ионной атмосферы по теории Дебая — Хюккеля, появившейся на 10 лет позднее. В сущности, величина 1/к, обозначающая в теории Дебая— Хюккеля радиус ионной атмосферы (разд. 2-3), в теории Гуи — Чепмена является мерой толщины двойного слоя [92, 93]. Протяженность диффузного слоя ионов находится в обратной зависимости (приближенно) от квадратного корня из концентрации данного электролита. Если противоионы имеют большой заряд, то двойной слой сжат значительно сильнее, чем в присутствии противоионов малого заряда, так как электрическое притяжение возрастает пропорционально квадрату заряда иона. [c.180]

    Это уравнение после двойного интегрирования дает соотношение, выражающее закон изменения поверхностного потенциала от расстояния в диффузной части двойного электрического слоя и от свойств раствора. Чтобы в полной мере представлять возможности соотнощения (П.114), лежащего в основе теории двойного электрического слоя, необходимо учитывать основные допущения и предположения, принятые Гуи и Чепменом прн его выводе двойной электрический слой является плоским, диэлектрическая проницаемость не зависит от расстояния. v, ионы представляют собой точечные заряды (т. е. не имеют объема), при переводе противоионов из объема раствора в двойной электрический слой совершается работа только против электростатических сил. [c.69]

    Современная теория двойного электрического слоя использует теорию Гуи—Чепмена для описания диффузной части этого с.лоя. В первоначальном варианте теория Гуи — Чепмена не учитывала наличия слоя Гельмгольца, и поэтому ее допущения не позволяли правильно описать электрические явления, на которые существенное влияние оказывает плотная, непосредственно прилегающая к межфазной поверхности часть слоя. Пренебрежение размерами ионов приводит к тому, что не принимается во внимание толщина адсорбционного слоя, и это, в свою очередь, вызывает большие погрешности при расчете параметров двойного электрического слоя. Кроме того, теория Гуи—Чепмена рассматривая только влияние концент- [c.73]

    Применение этой теории здесь вполне допустимо, так как деформация диффузных электрических слоев в зазоре происходит, очевидно, преимущественно в области наиболее диффузной их части и не затрагивает, ио крайней мере в первом приближении, области, близкой к фазовой поверхности, где поправка Штерна существенна. [c.155]

    Диффузное распределение зарядов по теории Гуи дает кривую потенциала, полого спадающую по мере удаления от твердой фазы (рис. 105). В дальнейшем теория строения двойного слоя разрабатывалась О. Штерном (1924) и А. Н. Фрумкиным и его школой, которые предложили следующую теорию двойной электрический слой на границе твердое тело— жидкость образуется под влиянием двух взаимно противоположных сил электростатических и диффузионных. В результате взаимодействия указанных сил противоионы в жидкости образуют около твердой поверхности адсорбента два слоя 1) адсорбционный (неподвижный) слой, прочно связанный с адсорбентом, и 2) подвижный слой, расположенный в дисперсионной среде (рис. 105, а). [c.359]

    Чапманом. Такое предпо-ложенне было сделано Штерном (1924) в его адсорбционной теории двойного электрического слоя. Штерн полагал, что определенная часть ионов удерживается вблизи поверхностн раздела металл — электролит, образуя ге./1ьмгольцевскую пли конденсированную обкладку двойного слоя с толщиной, отвечающей среднему радиусу попов электролита. Здесь Штерн следовал принципам, заложенным во втором приближении теории Дебая и Гюккеля. Таким образом, успехи теории растворов в свою очередь содействовали развитию теории двойного электрического слоя иа границе электрол — электролит. Остальные иопы, входящие в состав двойного слоя внутри гел ьм гол ьцеп с ко й обкладки, по ис удерживаемые жестко на поверхности раздета, распределяются диффузно с постепенно убывающей плотностью заряда. Для диффузной части двойного слоя Штерн, так же как и Гуи, пренебрег собственными размерами нонов. Кроме того, Штерн высказал мысль, что в плотной части двойного слоя ионы удерживаются за счет не только [c.267]

    Было предпринято много попыток разработать теорию двойного электрического слоя, которая бы количественно согласовывалась с опытными данными. Так, Райс (1926—1928) высказал предположение, что и внутри металла пе все заряды локализованы в одной плоскости, а распределяются в его объеме с постепенно убывающей плотностью. Одпако представление о двух диффузных слоях по обе стороны границы раздела вряд ли приложимо к тому случаю, когда одна нз граничащих фаз. чвляется металлом. Возможно, что оио реализуется на границе ионопроводящих фаз, а также на границе полупроводника с раствором. [c.271]

    Теория двойного электрического слоя получила развитие в работах Фрумкина и Дерягина. Согласно их представлениям, внутреннему слою ионов двойного электрического слоя, получивших название потенциалобразующих, плотно примыкает некоторая часть противоположно заряженных ионов (рис. 50, а), называемых против о ионам и. Эта часть противоионов передвигается вместе с частицей и образует слой толщиной 6", называемый адсорбционным. На рис. 50, а граница между такой частицей и средой обозначена пунктиром. Остальные противоио-ны располагаются в дисперсионной среде, где они распределены, как правило, диффузно. [c.166]

    Теория Гуи — Чэпмена. Значительным шагом вперед явилась теория двойного электрического слоя с диффузным слоем противоионов, предложенная независимо друг от друга Гуи (1910 г.) и Чэпменом (1913 г.). Эта теория в значительной мере устранила недостатки теории Гельмгольца — Перрена. По теории Гуи —Чэпмена противоионы не могут быть сосредоточены только у межфазной поверхности и образовывать моноионный слой, а рассеяны в жидкой фазе на некотором расстоянии от границы раздела. Такая структура двойного слоя определяется, с одной стороны, электрическим полем у твердой фазы, стремящимся притянуть эквивалентное количество противоположно заряженных ионов возможно ближе к стенке, а с другой стороны, тепловым движением ионов, [c.176]

    Поскольку далее предполагается, что в пространстве между поверхностью металла и внутренней плоскостью Гельмгольца, а также между двумя плоскостями Гельмгольца нет зарядов, то падение потенциала здесь линейное и двойной электрический слой имеет строение, показанное на рис. 43. На рисунке видно, что потенциал нулевого заряда определяется величиной г[)% а не = как это вытекало из теории Штерна. Поскольку [г1 ]>[ ф°], то и сдвиг точки нулевого заряда при переходе от одного аниона к другому в этом случае будет больше. Теория двойного электрического слоя Грэма, позволяющая учитывать влияние заряда электрода на величину специфической адсорбции, была рассмотрена Деванатха-ном, который представлял двойной слой эквивалентным последовательному соединению трех конденсаторов, слагаемых из 1) электростатической емкости пространства между металлом и внутренней плоскостью Гельмгольца, 2) электростатической емкости пространства между двумя плоскостями Гельмгольца и 3) — емкости диффузного слоя. При этом две последние емкости должны быть исправлены с учетом изменения специфической адсорбции в зависимости от заряда поверхности. Последнее предположение давало объяснение кривым дифференциальной емкости, измеренным в водных растворах галогенидов калия. Кроме того, расчет сдвига точки нулевого заряда, основанный на этой теории, находился в согласии с экспериментальными результатами. Так как емкости всех трех конденсаторов определяются из опытных данных, то теория Деванатхана носит в конечном итоге полуэмпирический характер. Эта теория, кроме того, исходит из того, что общая интегральная емкость плотного слоя не зависит от заряда электрода. [c.232]

    В 1917 г. Н. П. Песков в г. Иванове ввел понятия агрегатив-ная и седиментацнонная устойчивость. Первое понятие подразумевает устойчивость частиц золей к агрегации — слипанию друг с другом. Было предложено много теорий, объясняющих агрегативную устойчивость. Среди них особенно большое значение получила теория двойного электрического слоя, впервые высказанная Г. Гельмгольцем еще в 1879 г. Ему же принадлежит понятие дзета-потенциала (потенциала двойного электрического слоя). Немецкий химнк Г. Мюллер в 1928 г. высказал мысль, что мицеллы (коллоидные частицы) представляют собой образования, состоящие из частицы (золя), окруженной диффузной, атмосферой ионов, несущих заряд, обратный по знаку заряду протнвоионов. [c.255]

    В тех случаях, когда индикаторным является один из ионов растворенного электролита (а в этих случаях, согласно [2], наблюдаются наибольшие нерастворяющие объемы), величину нерастворяющего объема можно оценить на основе теории двойного электрического слоя. Действительно, в известном методе отрицательной адсорбции Кононов [6, 7] наблюдаемое увеличение концентрации раствора (А = = с — Со) рассматривается как электростатическое вытеснение одноименно заряженного иона (коиона) из зоны ДЭС в объем раствора, концентрация противоионов в растворе также повышается вследствие электронейтральности. Поскольку вытеснение коионов происходит именно в диффузном слое, для расчета отрицательной адсорбции можно использовать выражение для коионной компоненты, вытекающее из теории Гуи. Для 1—1 электролита и О [c.89]

    Существование вторичных частиц В случае Са-, N1- и А1-форм монтмориллонита значительно осложняет диффузию ионов бутиламмония к ионообменным центрам этого минерала. В случае же натриевой формы равновесие обмена определяется только скорост1 ю диффузии органического катиона и не осложнено стерическими затрудн4ниями. Кроме этого фактора на кинетику обмена оказывает влияние, по-видимому, энергия связи изученных катионов с поверхностьнэ алюмосиликата. Согласно теории двойного электрического слоя, гидратированные ион ы натрия связаны слабыми электростатическими силами с поверхность адсорбента и образуют в основном диффузный слой противоионов. Скорбеть обмена в этом случае определяется только скоростью взаимодиффузии через пленку жидкости ионов натрия и бутиламмония. В отличие от ионов натрия, катионы кальция, никеля и алюминия прочно связаны с поверхностью монтмориллонита и не образуют значительного диффузного слоя [10]. [c.24]

    Было предпринято много попыток разработать такую теорию двойного электрического слоя, которая бы количественно согласовалась с опытными данными. Так, Райс (1926—1928) высказал предположение, что и внутри металла не все заряды локализованы в одной плоскости, а распределяются в объеме металла с постепенно убывающей плотностью. Представление о двух диффузных слоях по обе стороны границы раздела вряд ли приложимо к тому случаю, когда одна из граничащих фаз является металлом. Возможно, что она реализуется на границе ионнопроводящих фаз, а также на границе полупроводника с раствором. Есин и Шихов (1943) усовершенствовали теорию Штерна, учтя дискретный характер ионных слоев. Они предположили, что специфически адсорбирующиеся ионы будут присутствовать в двойном слое в виде взаимно связанных ионных пар анион — катион. Эта идея была развита Эршлером (1946), который считает наиболее вероятным гексагональное расположение адсорбированных ионов, связанных со стороны раствора с деформированной ионной атмосферой. Модель Эршлера позволяет количественно истолковать влияние поверхностноактивных ионов на сдвиг максимума электрокапиллярной кривой. [c.276]

    Теория Гуи оправдывается лучше всего там, где теория Гельмгольца оказывается неприложимой, и, наоборот, последняя дает лучшую сходимость с опытом в тех случаях, когда первая дает неверные результаты. Следовательно, строению двойного электрического слоя должно отвечать некоторое сочетание моделей, предложенных Гельмгольцем и Гуи. Такое предположение было сделано Штерном (1924) в его адсорбционной теории двойного электрического слоя. Штерн полагал, что определенная часть ионов удерживается вблизи поверхности раздела металл — электролит, образуя гельмгольцевскую обкладку двойного слоя с толщиной, отвечающей среднему радиусу ионов электролита . Остальные ионы, входящие в состав двойного слоя, распределяются диффузно с постепенно убывающей плотностью заряда. Для диффузной части двойного слоя Штерн, так же как и Гуи, пренебрег собственными размерами ионов. Кроме того, Штерн высказал мысль, что в плотной части двойного слоя ионы удерживаются не только за счет электростатических сил, но и за счет сил специфической адсорбции, т. е. силами некулоновского происхождения. Поэтому в растворах, содержащих поверхностно-активные ионы, их число в гельмгольцевском двойном слое может быть не эквивалентным заряду поверхности металла, а превосходить его на некоторую величину, зависящую от свойств иэпов и заряда металла. Таким образом, по Штерну, следует различать две модели двойного электрического слоя, одна из которых относится к растворам поверхностно-инактивных электролитов, [c.271]

    Было предпринято много попыток разработать теорию двойного электрического слоя, которая бы количественно согласовывалась с опытными данцыми. Так, Райс (1926—1928) высказал предположение, что и внутри металла не все заряды локализованы в одной плоскости, а распределяются в его объеме с постепенно убывающей плотностью. Однако представление о двух диффузных слоях по обе [c.293]

    Наиболее общая теория двойного электрического слоя, объединяющая теорию молекулярного конденсатора и теорию диффузного двойного слоя Гуи, была развита Штерном. Согласно теории Штерна, некоторая часть ионов, компенсирующих заряды на поверхности твердой фазы, находится непосредственно около нее, образуя молекулярный двойной слой типа слоя Гельмгольца (или, иначе, адсорбционный слой), а остальная часть компенсирующих ионов распределена диффузно в глубь жидкости, образуя слой типа диффузного слоя Гуи. При разбавлении раствора структура двойного электрического слоя в целом приближается к типу слоя Гуи, а при увеличении концентрации — к слою Гельмгольца. При отно-ситфхьном движении твердой и жидкой фазы разрыв происходит между адсорбционной и диффузной частьк> двойного электрического слоя и, следовательно, величина электрокинетического потенциала С определяется падением потенциала в диффузной части двойного электрического слоя .  [c.217]

    Теория диффузного двойного слоя получила дальнейшее развитие в работах Штерна, который учел, что ионы имеют вполне определенные конечные размеры и центры их не могут подойти к поверхности ближе, чем на расстояние одного ионного радиуса. При этом только часть противононов удерживается заряженной поверхностью на расстоянии ионного радиуса, образуя гельмо-гольцевский плоский конденсатор. Остаток противононов распределен в растворе диффузно в виде непрерывного объемного заряда, с плотностью, асимптотически уменьшающейся до нуля по мере удаления от поверхности в глубь раствора (концентрация ионов в этом слое убывает с удалением от заряженной поверхности по статистическому закону Больцмана аналогично изменению распределения газовых молекул в поле тяжести). На основе теории диффузного двойного электрического слоя Гюи—Штерна, [c.322]

    Для объяснения явлений, связанных с процессом ионного обмена, было предложено использовать теорию двойного электрического слоя, выдвинутую Гельмгольцем [235] и видоизмененную позднее другими авторами [202, 522] для объяснения электроки-нетических свойств коллоидов. Хотя результаты обширных исследований электрокинетических свойств различных коллоидных систем, проведенных после первой классической работы в этой области в 1856 г. [235], убедительно доказали, по мнению многих авторов, существование двойного электрического слоя на поверхности большинства коллоидов, вопрос о происхождении и структуре двойного электрического слоя все еще является основной проблемой коллоидной химии. Но классической теории Гельмгольца, двойной слой состоит из двух жестких электрических слоев, аналогичных обкладкам конденсатора. Классическая модель двойного слоя Гельмгольца была модифицирована последующими работами других авторов, которые принимают, что двойной слой состоит из внутреннего неподвижного слоя и диффузного подвижного внешнего слоя зарядов. Существование заряженных слоев обусловлено адсорбированными ионами, которые отличаются от ионов, уже имеющихся во внутренней части коллоида, и определяют большую часть электрокинетических свойств коллоидной системы. Ионы, находящиеся во внешнем диффузном слое коллоида, распространяются во внешнюю жидкую среду. Нри этом нет четкой границы между ионами внешнего диффузного слоя и ионами внешней среды, находящимися с ними в равновесии. Мы можем поэтому принять, что концентрация ионов, из которых состоит диффузный сло11, непрерывно изменяется и зависит от концентрации и значений pH внешнего раствора. Если добавкой посторонних ионов изменить концентрацию ионов во внешнем растворе, то существующее равновесие нарушается и устанавливается новое. Некоторые из новых ионов ири этом входят в диффузный внешний [c.15]


Смотреть страницы где упоминается термин Теория диффузного электрического слоя: [c.119]    [c.124]    [c.119]    [c.119]    [c.80]    [c.290]    [c.235]    [c.248]    [c.167]    [c.288]    [c.30]    [c.185]   
Смотреть главы в:

Физико-химия коллоидов -> Теория диффузного электрического слоя




ПОИСК





Смотрите так же термины и статьи:

Диффузный слой

Электрический двойной слой диффузный, теория



© 2025 chem21.info Реклама на сайте