Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Получение кофермента

    Реальность такого реактора была показана на примере получения аланина из молочной кислоты. Смещение равновесия в нужную сторону в таком реакторе, содержащем лактатдегидрогеназу, достигается использованием высокой концентрации субстрата и быстрой утилизацией пировиноградной кислоты вторым ферментом. Стоит отметить, что подобная система служит также моделью возможного применения в лечебных целях, в которой ферменты и коферменты, иммобилизованные вместе, могут функционировать как самостоятельная единица для коррекции метаболического дисбаланса. [c.260]


    Препаративный синтез АМФ открывает также путь к получению кофермента А — кофермента ацилирования. [c.568]

    Синтез кофермента А. Заключительной стадией в получении кофермента А является построение пирофосфатной связи между его нуклеотидной и ненуклеотидной компонентами. [c.250]

    ПОЛУЧЕНИЕ КОФЕРМЕНТ-КОБАЛАМИНА [c.610]

    Уже в 1926—1929 гг. лауреатами Нобелевской премии Дж. Самнером и Дж, Нортропом были выделены первые ферменты в кристаллической форме — уреаза, пепсин и трипсин, которые, как было установлено, представляли собой чистые белки. В 1930-х годах были выделены внутриклеточные ферменты — желтый фермент Варбурга и алкогольдегидрогеназа, полученная в кристаллическом виде. Число выделенных в кристаллической форме ферментов с тех пор постоянно возрастало. При этом приходили все новые доказательства системной природы ферментов, состоящих из белковой части (апофермента) и небелковой части (кофермента), которые обеспечивают целостность структуры молекулы фермента и единство его каталитического действия. [c.180]

    Коферменты нуклеотидов обычно образуются в природе в результате реакций обмена. Только в последнее время такие реакции были успешно использованы для лабораторного синтеза коферментов. Трудность, заключающаяся в необходимости приостановить реакцию на первой стадии, была преодолена путем проведения реакции триэфира пирофосфорной кислоты (полученного в отсутствие катализаторов основного характера) с моноэфиром в присутствии основания. На практике активация осуществляется при взаимодействии. [c.112]

    Сообщалось о многочисленных синтезах АТР и ADP [88]. В настоящее время они имеют лишь академический интерес, поскольку оба кофермента легко доступны в коммерческих масштабах и получаются экстракцией из биологических источников. С целью иллюстрации общих принципов, применявшихся в этих, работах, ниже рассмотрены два таких синтеза. Пионерская ра бота Тодда и сотр. послужила для подтверждения структуры АТР и ADP. Описанный ими синтез [89] последнего соединения приведен на схеме (70). Синтез характерен применением защитных групп (как на углеводном остатке, так и на фосфате), для проведения реакции в нужном направлении и для применения классического метода получения смешанных ангидридов, а именно реакции соли кислоты с ацилхлоридом. Выходы в этом синтезе низки в силу нестабильности полностью этерифицированных фосфатных интермедиатов. [c.623]

    Основным методом получения коферментов НАД и НАДФ до последнего времени был метод выделения из природных источников, в качестве которых могут служить дрожжи п животные ткани. Содержание НАД в свежих дрожжах составляет около 0,5 г в 1 кг [221], в них очень мало НАДФ. Сердечная мышца кролика содержит около 0,4 г НАД в 1 кг [16]. Содержание НАДФ в печени, мышцах, эритроцитах составляет от 0,04 до 0,08г в 1 кг [222]. [c.313]


    Синтез цианокобаламина и фрагментов его молекулы Биологическое значение витамииа Вх . Зависимость между строен и биологической активностью Корриновые коферменты Структура кофермент-кобаламина Получение кофермент-кобаламина Частичный синтез кофермент-кобаламина Биохимические функции корринового кофермента Список использованной литературы (к главе Х1И) [c.632]

    Наиболее распространенным пептидом этого типа несомненно является глутатион (20). Он, по-видимому, присутствует во всех живых организмах и найден преимущественно в межклеточном пространстве, обычно в относительно высокой концентрации. Поскольку он выделен и охарактеризован почти 60 лет назад, изучены многие его биологичёские функции, и он включают сохранение тиольных групп в протеинах и других соединениях, разрушение пероксидов и свободных радикалов, выполнение роли кофермента для некоторых ферментов, а также детоксификация чужеродных соединений по пути образования меркаптуровой кислоты. Многие эти исследования, включая полученные таким путем химические данные, рассмотрены в обзорах [48, 49]. Наиболее крупное достижение, которое привлекло пристальное внимание, касалось роли у-глутаминового цикла 50] схема (4) . Этот важный биохимический процесс, в котором глутатион обеспечивает перенос аминокислот сквозь клеточные мембраны, описан достаточно хорошо. Следует отметить, что этот цикл описывает ферментативный синтез глутатиона с промежуточным образованием ферментно-связанного ацилфосфата. [c.298]

    При обработке Р1-аденозин-(2, 3 -циклофосфат)-5 -Р -дифенил-пирофосфата пантотин-4, 4 -дифосфатом образуется 2, 3 -цикло-фосфатная форма окисленного кофермента А. После инкубации этого соединения с рибонуклеазой Т2 (для получения исключительно З -фосфата), превращения его в тиоловую форму и очистки с помощью хроматографии был получен кофермент А с общим выходом 63%. Биохимическая оценка показала, что полученный продукт биологически активен. Щелочной гидролиз или гидролиз ядом гремучей змеи приводит к образованию единственного нуклеотидного производного—аденозин-3, 5 -дифосфата, без примеси аде-нозин-2, 5 -дифосфата 1442] (см. схему на стр. 276). [c.275]

    Недавно с помош,ью другого подхода была исследована активность полученных из тиазолиевых солей ациланионных соединений (биологический активный альдегид ) по отношению к содержащим серу электрофилам. При этом была построена модель стадии образования тиоэфиров, катализируемой содержащими липоевую кислоту ферментами. Результаты заставляют предполагать, что биологический синтез тиоэфиров кофермента А из а-кетокислот происходит путем прямого восстановительного ацилирования связанной с ферментом липоевой кислоты активным альдегидом (разд. 7.3). [c.466]

    Витамины, провитамины, коферменты. Методом М.с. производят в осн. витамин B j и его коферментную форму. Продуцентами в этом процессе служат пропионовокислые бактерии. Для получения кормовых концентратов, содержащих витамин Bjj, на отходах бродильной пром-стн (послеспиртовые, ацетоно-бутиловые барды и др.) применяют ко.мплекс метанообразующих бактерий. Разработаны способы получения витамина Bj, р-каротиыа и дрожжей, обогащсяных эргостеринами. При использовании соответствующих метаболич. предшественников возможен также М.с. никотинамидных коферментов, напр, никотинамидадениндинуклеотида. [c.82]

    Никотинамид взаимодействует с хлористым бензилом в абсолютном спирте, образуя с хорошим выходом 1-бензил-З-карбамоил-пиридиний хлорид [167 . Эта четвертичная соль часто используется для получения 1-бензил-1, 4-дигидроникотицамида — химической модели кофермента НАД-Н. О к1 атериизации азотистых гетероциклов см. обзоры [.168, 169]. [c.57]

    Для изучения структуры активных и регуляторных центров широко применяют химические аналоги субстратов, коферментов, эффекторов, способных стехиометрически и необратимо ингибировать фермент. Кинетический анализ полученных данных проводят методом Китца и Вильсона, основанным на предположении, что взаимодействие фермента с ингибитором протекает по следующей схеме. [c.212]

    Самым ответственным и наиболее сложным по химической структуре биологически активным производным пантотеновой кислоты является кофермент А, катализирующий различные реакции переноса и присоединения ацильных остатков в процессах жирового и углеводного обмена. Активной группой кофермента, осуществляющей эти реакции, является суль-фогидрильная группа 2-меркаптоэтиламина. Строение кофермента А было изучено реакциями его гидролитического расщепления [14, 33] на основании полученных данных установлена следующая химическая формула  [c.138]

    Прн реакции хлоргидрата тиофенилового эфира аланина с коферментом А был получен хлоргидрат S-аланилкофермента А, который, выделяли с помощью электрофореза. Прн действии на это соединение глутаминовой кислоты в буферном растворе при pH 8 продуктом реакции, по данным электрофореграммы, была аланилглутамииовая кислота [358]. [c.267]


    Коричная кислота гидроксилируется, полученные гидроксипроиз-водные метилируются. Последовательность этих превращений представлена на схеме 12.10, а. Образовавшиеся и-кумаровая, феруловая и синапо-вая кислоты затем восстанавливаются под действием оксидоредуктаз при участии НАДФН (через промежуточные высокоэнергетические тиоэфир-ные производные кофермента А) до соответствующих альдегидов и спиртов гидроксилирование и метилирование происходит также и у образовавшихся спиртов. В результате образуются три монолигнола - и-кумаро-вый, конифериловый и синаповый спирты (см. схему 12.10, б и в). [c.392]

    Информация о структурах FMN и FAD была получена в результате изучения продуктов химического и ферментативного гидролиза, при этом основным продуктом был рибофлавин (15). Химия рибофлавина и его производных, а также синтез этих соединений обсуждается в обзоре Вагнера-Яурегга [22]. Структуры коферментов были подтверждены встречным синтезом. На схеме (14) суммированы результаты синтеза FMN, разработанного Куном и сотр. [23], хотя имеется и более удобный метод получения небольших количеств рибофлавин-З -фосфата посредством прямого фосфорилирования рибофлавина (с использованием ряда реагентов), в результате чего получается 4, 5 -цикло-фосфат, переходящий в FMN после кислотного гидролиза [22] [c.589]

    Кофермент А принимает участие в биологической активации и переносе ацетильных групп. Структура кофермента (70) была установлена Липманом и сотр. [61] в результате проведения серии специфических ферментативных гидролизов. Так, обработка фосфатазой кишечника приводила к образованию аденозина, пантетеина и 3 моль фосфата. Положение фосфатных групп определяли после проведения более специфичных деградаций. Так, после обработки нуклеотидазой, специфически расщепляющей нуклеотид 3 -фосфа-ты, был получен дефосфокофермент А и 1 моль ортофосфата. Пирофосфатаза, с другой стороны, вызывала образование адено-зр.н-3, 5 -дифосфата (известное соединение) и пантетеин-4 -фосфата. Положение фосфатной группы в последнем соединении было установлено путем его сравнения с синтетическим образцом известной структуры. [c.610]

    Другой подход заключается в использовании специфических ингибиторов ферментов, структурно родственных коферменту. Так, метотрексат (58) является мощным ингибитором дигидрофолатредуктазы, причем это его свойство мало меняется в случае ферментов, выделенных из различных источников. Это соединение было ковалентно присоединено к 6-аминоэтилСефарозе путем конденсации с карбодиимидом, затрагивающей карбоксильную группу метотрексата. Полученный сорбент был использован для крупномасштабного выделения дигидрофолатредуктазы из Е. соИ. Промывка колонки 1 мольным раствором хлорида натрия вызвала удаление менее чем 1 % связанного фермента, а последующая элюция тем же раствором, содержавшим дигидрофолиевую кислоту, позволила достичь количественного выхода фермента [131]. [c.644]

    Биомасса дрожжей богата коферментом НАД (никотинамид-адениннуклеотид). Препарат НАД, необходимый для работы в биохимических лабораториях, можно получить из экстракта хлебопекарных дрожжей. Экстракцию ведут водой (82—85°С) в присутствии препарата аэросила А-300. Затем фильтрат, о.хлажден-ный до температуры 25—30°С, pH которого 6,0—6,1, пропускают через ионообменные смолы КУ-23 (Н+-форма). НАД элюируют 0,005 н. соляной кислотой. Полученный элюат еще раз пропускают через колонку с АН-231 (С1 -форма) и затем элюируют дистиллированной водой. Для дальнейшей очистки полученный раствор НАД пропускают через колонку с КУ-23 (Н+-форма) и только после элюирования 0,1 н. раствором аммоний-ацетатного буфера (pH 5,8—5,9) получают раствор, содержащий 95—99% пиридиновых коферментов, из которых 62—65% составляет активный кофермент НАД. Выход НАД при такой обработке составляет 50—60%. [c.203]

    В качестве примера иммобилизации ферментов и использования их в промышленности приводим схему непрерывного процесса получения аминокислоты аланина и регенерации кофермента (в частности, НАД) в модельной системе. В этой системе исходный субстрат (молочная кислота) подается при помощи насоса в камеру-реактор, содержащий иммобилизованные на декстране НАД и две НАД-зависимые дегидрогеназы лактат- и аланиндегидрогеназы с противоположного конца реактора продукт реакции —аланин—удаляется с заданной скоростью методом ультрафильтрации. [c.164]

    Подобные реакторы нашли применение в фармацевтической промышленности, например при синтезе из гидрокортизона антиревматоидного препарата преднизолона. Кроме того, они могут служить моделью для применения с целью синтеза и получения незаменимых факторов, поскольку при помощи иммобилизованных ферментов и коферментов можно направленно осуществлять сопряженные химические реакции (включая биосинтез незаменимых метаболитов), устраняя тем самым недостаток в веществах при наследственных пороках обмена. Таким образом, при помощи нового методологического подхода наука делает свои первые шаги в области синтетической биохимии . [c.164]

    Изучение и получение витаминов — природных незаменимых пищевых веществ— имеет важное значение. На основе предложенной химической классификации витаминов детально изложены и обобщены вопросы химии витаминов в ее современном состоянии, методы выделения из природных источников, различные методы синтеза. Рассмотрена зависимость биологической активности от структуры витаминов, коферментов и их химических модификаций. Детально излои ена химия провитаминов и рассмотрены пути их превращения в витамины. Даны представления о биологических свойствах витаминов, их превращении в коферменты, о биокаталитических функциях коферментов в обмене веществ животного организма, о роли витаминов в питании и путях их применения в пищевой промышленности, а также в животноводстве, о значении витаминов и коферментов в профилактике и лечении различных заболеваний. [c.2]

    Разделение полученных веществ проведено на ионообменной смоле дауэкс-2. Водные фракции содержали никотинамиднуклеотид и симметричный Р , Р -диникотинамиднуклеозид-5 -пирофосфат, а НАД удерживался на смоле вместе с АМФ и Р , Р -диаденозин-5 -пирофосфатом. НАД вымывался со смолы 0,01 н. муравьиной кислотой, АМФ — 0,1 н. и Р , Р -диа-денозин-5 -пирофосфат — 1 н. муравьиной кислотой. В результате ионообменной хроматографии НАД выделяли в виде аморфного порошка с содержанием 70% кофермента. [c.315]


Смотреть страницы где упоминается термин Получение кофермента: [c.249]    [c.249]    [c.251]    [c.563]    [c.403]    [c.726]    [c.280]    [c.341]    [c.344]    [c.283]    [c.80]    [c.270]    [c.243]    [c.105]    [c.106]    [c.129]    [c.277]    [c.283]    [c.611]    [c.643]    [c.72]    [c.75]    [c.80]    [c.85]   
Смотреть главы в:

Некоторые вопросы химии серусодержащих органических соединений -> Получение кофермента




ПОИСК





Смотрите так же термины и статьи:

Коферменты

Связывание кофермента с апоферментом и получение искусственных ферментов



© 2025 chem21.info Реклама на сайте