Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Растворы. Теория кислот и оснований

Рис. 5-3. Кислоты и основания по определению Бренстеда — Лаури. В теории Бренстеда — Лаури кислотой является любое вещество, высвобождающее в растворе протоны, а основанием-любое вещество, удаляющее из раствора протоны путем соединения с ними. H I представляет собой сильную кислоту, потому что легко высвобождает протоны. Ион СГ-слабое основание, потому что он обладает небольщой склонностью соединяться с Н . НС1 и СК могут рассматриваться как сопряженная пара кислота - основание. Рис. 5-3. Кислоты и основания по <a href="/info/683963">определению Бренстеда</a> — Лаури. В <a href="/info/2390">теории Бренстеда</a> — <a href="/info/132833">Лаури кислотой</a> является любое вещество, высвобождающее в <a href="/info/353087">растворе протоны</a>, а основанием-любое вещество, удаляющее из <a href="/info/353087">раствора протоны</a> <a href="/info/1538937">путем соединения</a> с ними. H I представляет <a href="/info/1795776">собой</a> <a href="/info/18713">сильную кислоту</a>, потому что легко высвобождает протоны. Ион СГ-<a href="/info/5210">слабое основание</a>, потому что он обладает небольщой склонностью соединяться с Н . НС1 и СК могут рассматриваться как сопряженная <a href="/info/18984">пара кислота</a> - основание.

    Согласно теории кислот и оснований Бренстеда - Лаури, вещество, являющееся источником протонов, представляет собой кислоту, а вещество, способное соединяться с протоном и удалять его из раствора, представляет собой основание. Когда кислота теряет свой протон, она превращается в сопряженное основание. Сильная кислота типа НС1 обладает слабым сопряженным основанием С1 , а слабая кислота, например НАс или КНГ имеет сравнительно сильное сопряженное основание. Ас или КНз. Всякая кислота, сопряженное основание которой значительно слабее Н2О (т. е. имеет меньшее сродство к протону Н , чем вода), должно полностью диссоциировать в водном растворе и поэтому представляет собой сильную кислоту. Кислоты, которые диссоциируют в водном растворе лишь частично, называются слабыми кислотами. [c.257]

    Теория электролитической диссоциации позволила дать научное определение понятиям кислота , основание , буферная емкость раствора , создать теорию индикаторов, объяснить процессы ступенчатой диссоциации, гидролиза солей и т. д. Ниже рассмотрены некоторые примеры приложения это["1 теории к химическому равновесию в растворах. [c.38]

    В 1887 г. Аррениусом была предложена теория электролитической диссоциации (см. гл. IV), которая по-новому решила вопрос о природе кислот и оснований. Согласно этой теории кислота — это вещество, диссоциирующее в растворе с образованием ионов Н . Все общие свойства кислот — кислый вкус, действие на металлы, индикаторы и т. п. являются свойствами ионов водорода. Основание—это вещество, диссоциирующее с образованием ионов ОН . Реакция нейтрализации сводится к взаимодействию водородных и гидроксид-ионов, приводящему к образованию недиссоциированных молекул воды. [c.232]

    Много места в книге отведено кислотно-основным равновесиям и теории кислот и оснований. Однако в соответствии с многоступенчатым характером изложения весь этот материал подан не как обычно-одной и не всегда легко усвояемой порцией, а увязан с другими, подчас далеко отстоящими в тексте темами. Например, вводя представления об электролитической диссоциации растворов, авторы ограничиваются определениями кислот и оснований по Аррениусу. Далее в связи с обсуждением кислотноосновных равновесий в растворах приводятся более общие определения Бренстеда и Лаури. И только после ознакомления с льюисовыми структурами молекул даются наиболее общие определения кислот и оснований по Льюису. Сложные проблемы расчета кислотно-основных равновесий вообще вынесены в отдельное приложение. [c.7]


    Б. Физическая химия. Общие вопросы. Некоторые вопросы субатомного строения вещества. Превращения ядер. Атом. Молекула. Химическая связь. Молекулярные спектры. Кристаллы. Газы. Жидкости. Аморфные тела. Радиохимия. Изотопы. Термодинамика. Термохимия. Равновесия. Фазовые переходы. Физико-химический анализ. Кинетика. Горение. Взрывы. Топохимия. Катализ. Радиационная химия. Фотохимия. Теория фотографического процесса. Растворы. Теория кислот и оснований. Электрохимия. Поверхностные явления. Адсорбция. Хроматография. Ионный обмен. Химия коллоидов. Дисперсное состояние. [c.29]

    Сванте Аррениус (1859—1927), профессор университета в Стокгольме и директор Нобелевского института. Предложил теорию, объясняющую свойства растворов солей, кислот и оснований и получившую название теории электролитической диссоциации. Аррениусу принадлежит также ряд исследований по астрономии, космической физике и в области приложения физико-химических законов к биологическим процессам. [c.233]

    Растворы. Теория кислот и оснований. [c.137]

    Согласно этой теории кислотой является соединение, дающее в растворе те положительные ионы, которые образуются при собственной диссоциаций растворителя. Основанием является вещество, дающее в растворе те отрицательные ионы,, которые образуются при собственной диссоциации растворителя. [c.273]

    РАСТВОРЫ. ТЕОРИЯ КИСЛОТ И ОСНОВАНИЙ [c.115]

    Химия шаг за шагом открывала новые формы дискретных частиц. Так, при изучении электрической проводимости водных растворов солей, кислот, оснований Св. Аррениус в 1884 г. обосновал теорию электролитической диссоциации (разложения) соединений на противоположно электрически заряженные ионы. В этот же период открыты сложные частицы мицелла, макромолекула, масса которых достигает нескольких сотен, тысяч углеродных единиц. [c.30]

    Теоретическая разработка вопроса далеко не завершена даже для водных растворов. Элементарное представление, основанное на классической теории электролитической диссоциации, характеризует свойства кислоты уравнением  [c.291]

    Кислотно-основные взаимодействия. С помощью индикаторной бумаги определяют pH нескольких растворов 0,01 М НС1, 0,01 М НР и раствор ЫНз. Результаты определения объясняют с помощью представлений теории кислот л оснований (разд. 33.4). [c.469]

    Из теории кислот и оснований известно, что если электронейтральное основание В растворено в кислоте НА, ионизация  [c.68]

    Подводя итог, можно сказать, что теория кислот и оснований Аррениуса полностью применима лишь при условии, что вещества реагируют в водном растворе. Поэтому детальное изучение процессов, протекающих без участия растворителя, а также реакций в неводных средах, потребовало существенного дополнения и обобщения этой теории. Естественно, что любая более общая теория кислот и оснований должна включать теорию Аррениуса как частный случай. [c.233]

    К началу XX в. теория электролитической диссоциации достигла больших успехов. На ее основе были объяснены многочисленные и разнообразные экспериментальные данные по электропроводности растворов, осмотическому давлению, температурам замерзания и другим физико-химическим свойствам растворов. Однако ряд экспериментальных данных теория объяснить не могла. Так, константа диссоциации электролита, выражаемая уравнением типа (152.4), в широком интервале концентраций изменялась. Особенно резкая концентрационная зависимость наблюдалась у водных растворов неорганических кислот, оснований и их солей (H2SO4, НС], NaOH, K l и т. п.). Разные экспериментальные методы часто приводили к неодинаковым значениям степени диссоциации электролита в одних и тех же условиях. [c.431]

    Велико значение теории кислот и оснований для неорганического синтеза. В результате реакций в неводных средах получено колоссальное число новых неорганических соединений многие из них весьма своеобразны и не похожи на вещества, существующие в водных растворах. [c.285]

    Теория кислот и оснований уже в течение нескольких столетий является одним из важнейших разделов химии. Существовавшие в этой области представления за последние десятилетия подверглись основательному пересмотру в связи с успехами многостороннего исследования неводных растворов и развитием химии комплексных соединений. Здесь возникли новые понятия и теории, которые в настоящее время стали неотъемлемой частью химической науки. [c.229]

    Титрование кислот, оснований и ряда солей полностью основано на кислотно-основных равновесиях. Наряду с этим необходимо иметь в виду, что подробное изучение кислотно-основных свойств растворов, изменения кислотности в процессе нейтрализации, теория индикаторов и другие теоретические проблемы имеют значение не только для объемного анализа, но и для других важных областей науки. [c.291]


    Согласно протолитической теории способность данного соединения проявлять свойства кислоты пти основания зависит от конкретных условий его существования, В одним условиях данное соединение может функционировать как донор протонов и быть кислотой, в других — как их акцепто[), т. е. быть основанием. Если какая-то частица теряет свой протон, иными словами проявляет свойства кислоты, он неизбеЛ Шо должен перейти к другой частице, которая будет, таким образом, играть роль основания. Поскольку эта реакция в той или иной мере обраткма, остаток первой частицы, образовавшейся после потери протона, должен обладать некоторыми основными свойствами. Он способе возвратить себе протон от присоединившей его частицы, которая поэтому будет обладать известными кислотными свойствами. Так как в растворах не существует свободных протонов, в равновесии кислота — основание должны участвовать две иары взаимосвязанных кислот и оснований  [c.70]

    Гидролиз солей, образованных слабыми кислотами и сильными основаниями, и щелочная реакция их растворов хорошо согласуются с протолитической теорией кислот и оснований (Бренстед, 1923), которая рассматривает кислоты как соединения, способные отщеплять протоны, а основания как соединения, способные присоединять протоны. При этом, как видно из уравнения гидролиза СН3СОО -ь Н О- —СН3СООН + ОН [c.134]

    Б. Физическая химия. Общие вопросы. Теория строения молекул и химической связи. Экспериментальные исследования строения молекул. Кристаллохимия и кристаллография. Химия твердого тела. Газы. Жидкости. Аморф ные тела. Радиохимия. Изотопы. Термодинамика. Термо.лимия. Рав.човесия. Физико-химический анализ. Фазовые переходы. Кинетика. Горение. Взрывы. Топохимия. Катализ, Фотохимия. Радиационная химия. Теория фотографического процесса. Газовая электрохимия. Растворы. Теория кислот и оснований. Электрохимия. Поверхностные явления. Адсорбция. Хроматография. Ионный обмен. Химия коллоидов. Дисперсные системы. [c.33]

    Основы теории электролитической диссоциации. В 1887 г-Вант-Гофф установил, что определенное экспериментально осмотическое давление в растворах солей, кислот и оснований превышает вычисленное по уравнению (2.59). Подобные отклонения измеренных величин от вычисленных по соответствуюш,им уравнениям наб.5юдаются в сторону повышения для температуры кипения и в сторону понижения для температуры отвердевания этих растворов. Так, например, молекулярная масса Na l равна 58,5, а на основании криоскопических измерений она оказалась равной при-щ мерно 30. Не зная, чем можно объяснить эти отклонения, но стремясь сделать соответствующие уравнения пригодными для этих растворов, Вант-Гофф ввел в них поправочный множитель i, названный изотоническим коэффициентом . Подставляя коэффициент i в уравнение для расчета осмотического давления и в уравнения законов Рауля, получаем соотношения, пригодные для описания разбавленных растворов всех веществ, в том числе и для растворов солей, кислот и оснований  [c.246]

    Если появление первых исследований химических реакций в-неводных растворах относится к началу столетия, то бурное развитие теории и практики титрования в неводных средах наблюдается лишь в последние два десятилетия. Это находит отражение в быстро растущ,ем числе публикаций. Следует отметить, что препаративное применение растворителей предшествовало их использованию в аналитических целях оно стимулировало разработку различных теорий кислот и оснований применительно к неводным средам, расплавам солей, а также реакциям кислотно-основного взаимодействия, протекаюш.им в отсутствие растворителей. Развитие теории в свою очередь послужило основой аналитических исследований. [c.337]

    Выход из создавшегося положения можно было искать в двух направлениях или по отношению к водным раствора.м кислот, оснований и солей неверна была сама теория или, наоборот, она оставалась верной и для этого случая, а видимые отклонения от нее обусловливались неправильным подсчетом числа раствореных частиц. Так как эффекты всегда получались большие, чем требовалось теорией, можно было думать, что при растворении, например, 100 молекул Na l в растворе получается более 100 частиц, т. е. что часть молекул поваренной соли распадается на какие-то более мелкие частицы. [c.122]

    Термодинамика. Термо.химля. Равновесия. Фазовые переходы. Физикохимический анализ Кинетика. Горение. Взрывы. Топохимия. Катализ Радиационная химия. Фотохимия Теория фотографического процесса Растворы. Теория кислот и оснований Электрохимия [c.365]

    Б. Физическая химия общие вопросы теория строения молекул и химической связи исследования строения и свойств молекул и химической связи кристаллохимия и кристаллография химия твердого тела газы, жидкости, аморфные тела радиохимия, изотопы термодинамика, термохимия, равновесия, физико-химический анализ, фазовые переходы кинетика, горение, взрывы, то-похимия, катализ фотохимия, радиационная химия, газовая электрохимия и химия плазмы, теория фотографического процесса растворы, теория кислот и оснований электрохимия поверхностные явления, адсорбция, хроматография, ионный обмен химия коллоидов, дисперсные системы. [c.71]

    Однако нужно иметь в виду, что понятия кислота и осио в теории электролитической диссоциации, предназначались тол растворов и не характеризовали возможность химического вза жду растворенным веществом и растворителем. Сейчас сложил представления о кислотах и основаниях, так как стало ясно, чп основания существуют не только в водных растворах, но и в р сителями кислотных и основных свойств могут быть молекулы висимости от кислотности пли основности растворителя одно и может быть как кислотой, так и основанием. По теории Брен(1 ваемля протолитическая теория) кислотами являются веществ [c.233]

    Развитые до настоящего времени теории кислот и оснований позволили многое понять в свойствах растворителей и растворов. И наоборот, исследования свойств растворителей в значительной мере способствовали развитию теорий кислот и оснований. Однако еще не создана всеобъемлющая теория растворителей, которая на основе единой концепции строения системы растворитель — растворенное вещество могла бы количественно описать все ее важнейшие свойства. В то же время для различных классов растворителей разработаны теории, которые могут качественно объяснить и предсказать результат влияния природы растворителя на процесс растворения и поведение растворенного вещества в различных реакциях. Среди этих теорий можно назвать теорию сольвосистем, которая разработана для ионизирующихся растворителей, координационную теорию, рассматривающую по большей части растворители с донорно-акцепторными свойствами, протонную теорию, пригодную для растворителей, в которых происходит перенос протонов. [c.440]

    Важный класс неорганических соединений, выделяемый по функциональным признакам, составляют кислоты. С позиций теории электролитической диссоциации к кпслогам относятся вещества, способные диссоциировать в растворе с образованием ионов водорода. С точки зрения протолити геской (протонной) теории кислот и оснований кислотами называются вещества, которые могут быть донорами протонов, т. е. способны отдавать ион водорода. [c.32]

    Свойства кислот, оснований и солей с точки зрения теории электролитической диссоциации. Рассмотрим в свете теории элек Тролитической диссоциации свойства веществ, которые в водных растворах проявляют свойства электролитов. [c.243]

    В этой реакции аммиак служит акцептором протона и, следовательно, с точки зрения протонной теории кислот и оснований (стр. 245) проявляет свойства основания. Действительно, реагируя с кислотами, находящимися в свободном состоянии или в растворе, аммиак нейтрализует нх, образуя соли аммония. Например, с соляной кислотой получается хлорид аммония NH4 I  [c.401]

    Аналогично ведут себя в поле катионов некоторых переходных металлов и другие полярные или легко поляризующиеся молекулы, способные проявлять протондонорные свойства — Н2О, NH20И, органические амины. Выступая в качестве лигандов, они способны к отн еплепию протона в водных растворах и с точки зрения протонной теории кислот и оснований (стр. 245) ведут себя как кислоты. Например, взаимодействие гидратированного иона меди с водой следует записать так  [c.604]

    Соединение, которое, подобно BFj, способно присоединять (акцептировать) электронную пару, называется льюисовой кислотой, а всякий поставщик (донор) электронной пары называется льюисовым основанием. Эта терминология вслед за описанной в гл. 5 терминологией Бренстеда призвана еще больше расширить простую теорию кислот и оснований Аррениуса. Согласно теории Аррениуса, кислота представляет собой вещество, образующее в водном растворе ионы водорода, или протоны, а основание-вещество, образующее гидроксидные ионы. Терминология Бренстеда обладает большей общностью кислотой является любое вещество, способное быть донором протонов, а основанием - вещество, способное поглощать (акцептировать) протоны. Чтобы проиллюстрировать различия всех трех систем определений, рассмотрим реакцию нейтрализации между НС1 и NaOH  [c.474]

    Образующееся вещество ЫОгР (фторид иитрония), согласно теории сольвосистем, в растворе ВгРз является основанием следовательно, оно будет реагировать с кислотами, давая соли, например  [c.257]

    Представление о кислотах и основаниях в неводных растворах рассматривается в обобщенной теории кислот и оснований (в теории протблитического равновесия) (Бренстед). Согласно этой теории кислотой называется химическое соединение, способное в течение реакции отдавать протон кислота — донор протона. Реакция присоединения протона к другому веществу, участвующему в реакции с кислотой, называется реакцией протонизации. Соединения НС1. NH4 и HjO — кислоты, так как они способны отщеплять протон  [c.420]

    При добавлении ЫНз к раствору соли марганца (И) в аммонийном буфере осадка не образуется (в этом случае также может идти быстрое окисление до марганца (IV)). На основе теории кислот и оснований Бренстеда, поясните роль ионов NHi+. Кроме того, следует учитывать, что ион марганца (II) образует гексаминный комплекс, благодаря чему концентрация свободных (точнее, гидратированных) ионов марганца(II) уменьшается. [c.631]


Смотреть страницы где упоминается термин Растворы. Теория кислот и оснований: [c.239]    [c.89]    [c.233]    [c.137]   
Смотреть главы в:

Химическая литература и пользование ею Издание 2 -> Растворы. Теория кислот и оснований

Химическая литература и пользование ею -> Растворы. Теория кислот и оснований




ПОИСК





Смотрите так же термины и статьи:

Основания и кислоты

Основания, теории

Растворов теория растворов

Растворы теория

Теории кислот и оснований



© 2024 chem21.info Реклама на сайте