Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Кристаллические соединения графита с металлами

    При обычной температуре элементарный углерод весьма инертен. При высоких же температурах он непосредственно взаимодействует с многими металлами и неметаллами. Углерод проявляет восстановительные свойства, что широко используется в металлургии. Окислительные свойства углерода выражены слабо. Вследствие различия в структуре алмаз, графит и карбин по-разному ведут себя в химических реакциях. Для графита характерны реакции образования кристаллических соединений, в которых макромолекулярные слои Сг , играют роль самостоятельных радикалов. [c.394]


    Общепринятый метод получения соединений графита с щелочными металлами (такими, как калий) основан на том, что при любой температуре кристаллическому соединению, содержащему добавку типа калия, соответствует определенное давление паров металла. Для приготовления нужного соединения необходимо подвергнуть графит действию достаточно высокого давления паров калия, которое создается в результате нагревания чистого металла до соответствующей температуры в том же эвакуированном объеме, в который помещен графит. По-видимому, существует дискретный ряд кристаллических соединений графита, которые могут образовываться при добавлении определенного количества второго компонента. Фиг. 40 иллюстрирует такое ступенчатое образование соединений графита с калием. Таким образом, для получения кристаллического соединения требуется, чтобы давление паров, необходимое для введения атомов металла с помощью сорбции, превыщало давление, соответствующее разложению этого соединения. Однако это значение должно лежать ниже давления, при котором происходит разложение следующего соединения, более богатого металлом. Однако не для всех случаев имеются достаточно полные кривые давления паров [422]. Соответствующие пары значений температуры для процесса ступенчатого образования были найдены для большого количества кристаллических соединений [300, 301, 421, 422, 629]. В качестве примера такого ступенчатого процесса можно указать на образование СвК при температуре графи- [c.143]

    В противоположность соединениям с присоединением щелочных металлов в кристаллических соединениях графита с внедрением таких молекул, как А1С1з, углеродные гексагональные сетки с обеих сторон внедренных групп сохраняют, по-вид имому, то же шахматное расположение, что и в маточном графите. Эти данные согласуются с предположением о более слабом взаимодействии в подобных кристаллических соединениях. [c.170]

    Твердые С. м.— неорганические и органические — кристаллические и аморфные материалы (графит, дисульфид молибдена, некоторые глины, тальк, мягкие металлы, полимеры, мыла, воски, жиры и др.), уменьшают износ и снижают коэффициент трения. Газообразные С. м. представляют собой индивидуальные газы, их смеси или пары некоторых соединений они применяются при низких и высоких температурах, высоких нагрузках, в условиях интенсивной ядерной радиации и др. (ракетные двигатели, системы регулировки и обслуживания ядерных реакторов, высокотемпературные промышленные установки). [c.230]


    Наиболее широко применяют на практике химическую очистку газо-образными галоидами, так как хлорирование и фторирование являются наиболее эффективными методами удаления большинства примесей из графита, поскольку сам графит не реагирует ни с хлором, ни с фтором, а образующиеся летучие соединения имеют более низкую температуру кипения, чем металлы и их карбиды. Кроме того, хлориды и фториды большинства элементов не диссоциируют при температуре графитации. Применение хлорирования, как отмечалось выше, способствуя графитации, улучшает степень совершенства кристаллической структуры графита. [c.177]

    Третью область соединений по аналогии с предыдущими можно было бы составить из неметаллических элементов. Однако по свойствам эти элементы значительно резче отличаются друг от друга, чем металлы. Поэтому для выделения более однородных частей приходится провести еще диагональную границу , идущую от бора к астату (№ 85). Справа от этой границы расположены элементы, у которых кристаллические структуры хотя бы для одной модификации молекулярные (или сложные, где <8 — например графит). Некоторые авторы называют их элементами-органогенами. Соединения этих элементов составляют область молекулярных, или органических, соединений в более щироком смысле слова, чем это обычно принято, т. е. в эту область попадают соединения элементов-органогенов не только с углеродом, но и друг с другом. Область этих соединений мы будем называть областью органических соединений и их аналогов. [c.265]

    Большинство пигментов (около 80% от общего количества) представляют собой неорганические соединения — оксиды, гидроксиды, соли металлов, имеющие кристаллическое строение. В качестве пигментов применяют также металлические порошки, сажу, графит и некоторые органические соединения. [c.275]

    Часто реакцию восстановления можно направить в сторону образования гидродимеров, применив для этого короткозамкнутый элемент с насадкой из материала, на котором хорошо идет электрохимическая гидродимеризация данного соединения. При исследовании процесса восстановления ацетона в короткозамкнутом элементе амальгама натрия — графит установлено, что на направление и скорость процесса гидродимеризации большое влияние оказывают электрохимические и адсорбционные характеристики графитов, применяемых в качестве насадки, состояние их поверхности, величина перенапряжения водорода на чистом графите и характер металла, осажденного на поверхность графита. Металлы с высоким перенапряжением водорода, повышая перенапряжение водорода на графите, увеличивают выход продуктов гидродимеризации. Включение кислорода в кристаллическую решетку графита уменьшает перенапряжение водорода на нем и приводит к снижению выхода пинакона [66, 67]. Гидродимеризация более сложных алифатических кетонов [67] протекает с меньшими выходами димерного продукта, по сравнению с ацетоном, в результате уменьшения их растворимости в щелочных растворах, более высокого потенциала восстановления и больших стерических затруднений. [c.238]

    Атомы некоторых элементов, а также многоатомные соединения могут внедряться в графит и образовывать слоистые соединения. Наиболее изучены слоистые соединения щелочных металлов [84]. Как правило, они получаются нагревом графита и соответствующего щелочного металла до температуры, отвечающей определенному давлению паров металла. Считается, что могут образовываться слоистые соединения определенного состава. Такой вывод делается из рассмотрения кривых зависимости состава слоистого соединения от температуры его получения. Эти кривые имеют вид изотерм сорбции, причем каждой ступеньке соответствует слоистое соединение определенного состава (рис. 55). Соотношение между углеродом и металлом имеет дискретные значения, которые для щелочных металлов составляют С Мё, С Ме, СзвЛ е, С Ме, С,(,(,Ме, что отвечает расположению слоя атомов металла через один слой углерода, два и т.д. соответственно. Такие соотношения характерны при применении для синтеза слоистых соединений достаточно совершенных кристаллических форм углерода. Наличие дефектов структуры в реальных материалах может приводить к образованию соединений, отличающихся составом от приведенных. [c.137]

    К реакциям, в которых слоистый каркас графита сохраняет присущую ему структуру и гексагональный характер, относятся реакции образования кристаллических соединений графита со щелочными металлами (Ма, К, Rb, Сз). В результате действия на графит жидких или парообразных щелочных металлов образуются соединения постоянного состава СаМе, С1вМе и др. Наиболее изучены соединения СвК и СиК. Атомы калия, внедряясь между базисными плоскостями, увеличивают расстояние между ними соответственно до 5,65 и 5,95 А. Внедрение атомов щелочных металлов в кристаллическую решетку графита вызывкет разрыхление материала. Наиболее сильное разрыхление наблюдается у нефтяного и пекового коксов, в меньшей степени — у графита. Таким образом, интенсивность разрушения возрастает с уменьщением степени трехмерной упорядоченности структуры углеродистого материала при перехфде от графита к коксам. [c.42]


    Важными являются химические свойства УМ, в частности взаимодействия с газами, С кислородом графит не взаимодействует до 400°С. Скорость реакции с кислородом и диоксидом углерода (IV) повышается с ростом температуры. Однако при 2600-2700°С имеется явно выраженный минимум реакционной способности по диоксиду углерода, что связано с изменением кристаллической структуры. На реакционную способность графитов существенно влияют примеси некото-рь1х металлов, например железа, меди, ванадия, натрия, которые могут служить катализаторами. ДЛя повышения стойкости графита против окисления применяют покрытия металлами, карбидами, боридами, нитридами и т.д. Ингибиторами окисления графита являются хлор и фосфорсодержащие соединения. Графит взаимодействует с расплавленными металлами, образуя карбиды. Растворимость углерода в металлах связана с дефектностью электронной полосы. [c.217]

    Силы, действующие между слоями углеродных гексагональных сеток, были рассмотрены ранее. Обычно х считают силами типа Ван-дер-Ваальса, однако если сетки становятся достаточно крупными, то нельзя забывать о возможном вкладе таких сил, которые обусловлены связями, возникающими вследствие переноса зарядов [721, 722], или полярнза-ционными связями (ср. [355, 456, 957]). Различными путями было показано, что многоядерные ароматические молекулы и углеродные гексагональные сетки в графите обнаруживают амфотерные свойства, поскольку они образуют кристаллические соединения, содержащие как электронные доноры (например, щелочные металлы), так и акцепторы, (AI I3). В случае отсутствия таких внедренных групп может сделаться ощутимой вероятность самополяризационных эффектов, для которых донорные и акцепторные свойства сеток чередуются. Интенсивное окрашивание некоторых соединений с более мелкими многоядерными ароматическими моле- [c.90]

    Некоторые дополнительные сведения об электронных зонах графита можно получить из данных по изучению соответствующих свойств кристаллических соединений, Одна из причин, затрудняющих развитие таких исследований, заключается в том, что сильное расширение пространства между слоями в процессе образования кристаллических соединений вызывает, как правило, дробление поликристаллического графита, так что имеющиеся экспериментальные данные получены главным образом на поликристаллических порошках. К настоящему времени эта трудность преодолена [1065], и сейчас имеются данные по анизотропии электрических и магнитных свойств кристаллических соединений графита. При рассмотрении соединений с более высокой по сравнению с графитом электропроводностью (например, в случае соединений графита с щелочными металлами и бромом) следует использовать наиболее реальную модель графита, по которой графит имеет бесконечную кристаллическую решетку с электронными энергетическими зонами, соответствующими его квазиметалличе-ской природе. Вследствие упрощенного представления электронных зон для бесконечных гексагональных сеток (т. е. в случае двумерного приближения для идеального графита) функция распределения электронов N (е) по энергиям е приобретает вид, показанный на фиг. 35. При этом одну зону можно считать почти совершенно пустой, а другую — почти целиком заполненной. [c.177]

    По химическому составу полупроводники весьма разнообразны. К ним относятся элементарные вещества, как, например, бор, графит, кремний, германий, мышьяк, сурьма, селен, а также многие оксиды ( uaO, ZnO), сульфиды (PbS), соединения с индием (InSb) и т. д. и многие соединения, состоящие более чем из двух элементов. Известны и некоторые органические соединения обладающие полупроводниковыми свойствами. Таким образом, к полупроводникам относится очень большое число веществ. Обусловлены полупроводниковые свойства характером химической связи (ковалентным, или ковалентным с некоторой долей ионности), типом кристаллической решетки, размерами атомов, расстоянием между ними, их взаиморасположением. Если химические связи вещества носят преимущественно металлический характер, то его полупроводниковые свойства исключаются. Зависимость полупроводниковых свойств от типа решетки и от характера связи ясно видна на примере аллотропных модификаций углерода. Так, алмаз — типичный диэлектрик, а графит — полупроводник с положительным температурным коэффициентом электропроводности. То же у олова белое олово — металл, а его аллотропное видоизменение серое олово — полупроводник. Известны примеры с модификациями фосфора и серы. [c.298]

    Безусловно, что в кратком обзоре невозможно охарактеризо- вать все классы неорганических материалов, однако нельзя не сказать о графитовых материалах, которые выделяются исключительно высокой теплопроводностью, превышающей теплопроводность многих металлов и сплавов. Это качество наряду с химической инертностью и термической стойкостью при резких перепадах температур, высокой электрической проводимостью и хорошими механическими свойствами сделали графит и материалы на его основе незаменимыми в различных областях техники и промышленности. В частности, в химической промышленности применение графита особенно эффективно для изготовления теплообменной аппаратуры, эксплуатируемой в агрессивных средах. На ее поверхности в значительно меньшей степени откладываются накипь и загрязнения, чем на поверхности всех других металлических и неметаллических материалов. Сырьем для получения искусственного графита служит нефтяной кокс, к которому добавляют каменноугольный пек, играющий роль вяжущего материала при формовании изделий из графитовой шихты. Сам цикл получения изделий включает измельчение и прокаливание сырья, смешение шихты, прессование, обжиг и графитизацию. Условия обжига тщательно подбирают, чтобы избежать появления механических напряжений и микротрещин. При графитизации обожженных изделий, проводимой при температуре 2800—3000 °С, происходит образование упорядоченной кристаллической структуры из первоначально аморфизованной массы. Чтобы изделиям из графита придать непроницаемость по отношению к газам, их пропитывают полимерами, чаще всего фенолформальдегидными, или кремнийор-ганическими смолами, или полимерами дивинилацетилена. Пропитанный графит химически стоек даже при повышенных температурах. На основе графита и фенолформальдегидных смол в настоящее время получают новые материалы, свойства которых существенно зависят от способа приготовления. Материалы, формируемые при повышенных давлениях и температурах, известны под названием графитопластов, а материалы, получаемые холодным литьем, названы графитолитами. Графитолит, например, применяют не только как конструкционный, но и как футеровочный материал. Он отверждается при температуре 10 °С в течение 10—15 мин, имеет высокую адгезию ко многим материалам, хорошо проводит теплоту и может эксплуатироваться вплоть до 140—150°С. В последнее время разработан метод закрытия пор графита путем отложения в них чистого углерода. Для этого графит обрабатывают углеводородными соединениями при высокой температуре. Образующийся твердый углерод уплотняет графит, а летучие продукты удаляются. Такой графит назван пироуглеродом. [c.153]

    При высоких температурах (670—870 К) в присутствии сильных окислителей графит претерпевает окислительные превращения, которые в конечном счете приводят к образованию газообразных продуктов. При более низких температурах (570—670 К) могут образовываться слоистые соединения графита, в которых еще сохраняется слоистый каркас углеродных сеток. Среди слоистых соединений графита большую группу составляют продукты, содержащие калий и другие щелочные металлы. Так, расплавленный металлический калий поглощается графитом с образованием при 670 К продуктов приблизительного состава СаК, С1бК, С24К, СзбК. Атомы калия, внедряясь между базисными плоскостями графита, увеличивают расстояние между ними до (5,40—5,65) X X м [31]. Внедрение атомов щелочных металлов в кристаллическую решетку графита вызывает разрыхление материала. В ряде случаев графит выступает донором электронов в так называемых графитовых солях. Известны синие соли графита, и среди них особой стабильностью обладают нитрат графита 24 NOз-, который характеризуется расстоянием между слоями углеродных атомов 8-10 м [31]. Существует мнение, что нитрат графита можно рассматривать в качестве некоторого промежуточного продукта, возникающего при одновременном действии температуры и окислителя с образованием предельно окисленного продукта. [c.473]

    Сульфиды рзэ проявляют значительное разнообразие кристаллических ( рм, которые, однако, не сильно различаются по физикохимическим и химическим свойствам. Особый интерес, проявляемый к этим соединениям, вызван чрезвычайно высокой термической устойчивостью сульфидов как самих по себе, так и в присутствии других материалов. Это дает возможность заменить графит при плавлении тугоплавких металлов там, где есть опасность образования карбидов. Однако у огнеупоров из сульфидов рзэ есть крупный недостаток, заключающийся в окислении кислородом при достаточно высоких температурах, что вполне понятно, если сравнить сродство рзэ к кислороду и сере (например, теплоты образования La Og и LaaSg равны соответственно 428 и 301 ккал1моль). [c.34]

    Краевой угол воды на всех неорганических поверхностях меньше, чем на углеводородных органических, и изменяется в зависимости от их состояния. На большинстве совершенно чистых минеральных поверхностей вода образует весьма малые краевые углы. К гидрофильным неорганическим соединениям принадлежат вещества с ионной гетерополярной решеткой и вообще соединения, образующиеся за счет межмолекулярных сил (окиси и соли металлов, кварц, стекло, алмаз и др.). К числу сравнительно гидрофобных неорганических веществ относятся чистые неокисленные металлы (их сульфиды, графит, уголь, сера), т. е. тела, обладающие гомеополяр-ной, атомной или металлической (атомно-электронной) кристаллической решеткой, не способные к образованию водородной связи с молекулами воды [34]. [c.19]

    К реакциям, в которых кристаллическая структура не полностью разрушается, относится образование твердых растворов металлов в графите. В них атомы металлов закономерно размещаются между базисными слоями кристалла графита. Металлические свойства графита при этом не исчезают. В результате действия на графит жидких или парообразных щелочных металлов образуются соединения постоянного состава СзК и С1бК. Атомы калия, внедряясь в пространство между базисными слоями, увеличивают расстояние между ними [c.57]

    Натуральный графит, называемый также плюмбаго или свинцовой рудой, часто встречается в виде волокнистых или плотных кристаллических, иногда пластинчатых вкраплений в известковые породы, слюду, граниты, гнейсы. Месторождения графита имеются во многих странах на Цейлоне, Мадагаскаре, в Австрии, США, Корее, Мексике. Цвет графита различен от бархатисто-черного до стального серого. Графит кристаллизуется в мелких гексагональных пластинках, но существует и аморфный графит. Первый образуется в результате разложения карбидов металлов, а второй — при разложении органических соединений. Удельный вес чистого натурального графита колеблется от 2,25 до 2,35 г/сж . Обычно в графите содержатся примеси, главным образом окись железа, глинозем, кремнезем и известь поэтому содержание углерода в природном графите составляет от 75 до 92%. Для очистки графит измельчают, промывают и иногда подвергают химической обработке. [c.520]


Смотреть страницы где упоминается термин Кристаллические соединения графита с металлами: [c.153]    [c.155]    [c.87]    [c.263]    [c.162]    [c.366]    [c.278]    [c.22]    [c.268]    [c.321]    [c.606]   
Смотреть главы в:

Графит и его кристаллические соединения -> Кристаллические соединения графита с металлами




ПОИСК





Смотрите так же термины и статьи:

Графит

Графит графита

Графит металлов

Графой

Графы

Кристаллические соединения графита

Металлы соединения

Соединения кристаллические

Соединения с графитом



© 2024 chem21.info Реклама на сайте