Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

О гидрофобных эффектах в химических реакциях

    Характерная особенность структуры мицелл — это гидрофобное ядро, образованное углеводородными цепями молекул ПАВ, окруженное гидрофильным слоем их головных групп. Этим создается некоторое подобие мицеллярной структуры со структурой глобулярных белков (см. гл. I). Однако если белковая глобула — это относительно жесткое и весьма неоднородное образование, то мицелла ПАВ, напротив, носит псевдожидкий характер [1001 и образована совершенно идентичными молекулами ПАВ. Хотя эти различия и накладывают существенные ограничения на использование мицелл как моделей ферментов [1011, с другой стороны, именно благодаря простоте в построении мицелл в мицеллярных системах наиболее четко и достоверно могут быть прослежены такие эффекты, как стабилизация переходного состояния химической реакции за счет дополнительных сорбционных взаимодействий (или же сближение реагентов при их концентрировании), далее сдвиг р/Са реагирующих групп и влияние микросреды на скорость реакции. [c.115]


    Механизм мицеллярного катализа сложен, зависит от специфики реагентов и ПАВ и выяснен далеко не в полной мере. Влияние мицелл на химические реакции определяется двумя основными факторами — изменением реакционной способности веществ при переходе их из воды в мицеллярную фазу и эффектом концентрирования реагентов в мицеллах, причем второй фактор во многих случаях является единственным источником мицеллярного катализа. Изменение реакционной способности вещества в мицеллах обусловлено совокупностью электростатических и гидрофобных взаимодействий между молекулами реагента и мицеллами, что приводит к изменению энергий основного и переходного состояний реагентов На роль электростатических взаимодействий указывает, в частности, тот факт, что обычно реакции нуклеофильных анионов с нейтральными молекулами ускоряются катионными мицеллами, замедляются анионными, а мицеллы НПАВ практически не оказывают на них влияния. Во многих случаях мицеллы влияют не только на кинетику, но и на равновесие реакций, что не свойственно истинным катализаторам. [c.86]

    У1.7. О ГИДРОФОБНЫХ ЭФФЕКТАХ В ХИМИЧЕСКИХ РЕАКЦИЯХ [c.185]

    Хотя фундаментальная роль гидрофобных взаимодействий связана с химическими процессами в клетках живых организмов, экспериментальное изучение этих эффектов проводится почти исключительно на модельных системах в статических условиях (т. е. в системах без химических реакций). Такое положение выглядит несколько парадоксальным и связано, скорее всего, с тем, что условия проведения той или иной реакции (необходимость поддержания определенных значений pH, ионной силы, введение катализатора и т. п.) делают зачастую крайне затруднительным выделение отдельных эффектов, в частности, эффекта гидрофобных взаимодействий. В предыдущих разделах говорилось, правда, о роли гидрофобной гидратации основного и переходного состояний. Однако работ, в которых бы изучалось непосредственно влияние неполярных радикалов взаимодействующих молекул на механизм и скорость [c.185]

    Отдельные этапы взаимодействия фермента и субстрата при ферментативном катализе все более проясняются. В частности, установлено, что за стадией адсорбции субстрата в активном центре фермента наступает узнавание субстратным центром фермента той части молекулы субстрата, которая непосредственно не подвергается химическому преобразованию. За счет возникающих при этом многоточечных контактов, реализующихся в виде сил слабого взаимодействия (гидрофобные, водородные и др.), связь субстрата с ферментом упрочняется. Одновременно с этим в активном центре фермента стабилизируется та часть субстрата, которая в дальнейшем участвует в химической реакции,—она фиксируется в напряженной конфигурации, близкой к переходному состоянию субстрата при превращении его в продукт. В результате реагирующий фрагмент молекулы субстрата и каталитические группы фермента образуют продуктивный комплекс, где уже частично осуществлены электронно-конформационные переходы, необходимые для протекания собственно химической стадии ферментативного процесса. Это приводит к понижению энергии активации, необходимой для осуществления химической реакции, благодаря энтропийному эффекту вследствие иммобилизации, закрепления, жесткой ориентации субстрата в актив- [c.104]


    Так как процессы осаждения являются поверхностно-активированными реакциями, состав, строение и условия поверхности подложки могут оказать сильный эффект на параметры процесса осаждения. Химические примеси на поверхности могут воздействовать либо как катализаторы, либо как ингибиторы скорости роста. Различные свойства поверхности, такие как гидрофобность и гидрофильность, могут значительно изменять скорость осаждения при некоторых условиях, [c.89]

    В согласии с механизмом (4.40) субстратоподобный ингибитор действительно вытесняет из активного центра несколько молекул воды, как это было обнаружено при рентгеноструктурном анализе кристаллического химотрипсина [123]. Однако этот механизм не согласуется с данными по влиянию среды на гидрофобное фермент-субстратное взаимодействие (см. 4 этой главы). Кроме того, механизм (4.40) противоречит тому, что двойной выигрыш свободной энергии экстракции реализуется лишь в переходном состоянии химической реакции [см. уравнение (4.39)], в то время как в комплексе Михаэлиса вклад гидрофобного фермент-субстратного взаимодействия меньше [см. уравнение (4.29)]. Иными словами, в химотрипсиновом катализе не вся потенциальная свободная энергия сорбции, которую предполагает модель (4.40), равная 2АСэкстр, реализуется в виде прочного связывания субстрата с ферментом. Из диаграммы, представленной на рис. 44, видно, что в комплексе Михаэлиса (или ацилферменте) реализуется в виде свободной энергии связывания E-R лишь инкремент свободной энергии сорбции, отражающий перенос субстрата из воды в неводное окружение (в среду белковой глобулы), равный АО кстр [см. также уравнение (4.29)]. Для объяснения этих фактов следует допустить, что гидрофобное фермент-субстратное взаимодействие идет в две стадии 1) образование фермент-субстратного комплекса протекает по механизму (4.19), который не противоречит данным по солевому эффекту (на их основании он был и предложен), и термодинамические закономерности его согласуются с уравнением (4.29). Этот механизм также предполагает вытеснение нескольких молекул воды из [c.155]

    Сильно поверхностно-активные вещества (не стабилизаторы) могут быть дезмульгаторами устойчивых эмуЛьсий, т. е. способствовать их расслоению в результате коалесценции капелек. Адсорбируясь сильнее, чем стабилизатор, такие деэмульгаторы вытесняют его с поверхности капелек, но агрегативную устойчивость эмульсий они не обеспечивают, т. е. не могут предотвратить коалесценцию — слияние капелек. Адсорбируясь на твердых поверхностях, например на поверхности частичек пигментов или наполнителей, поверхностноактивные вещества второй группы могут резко изменять молекулярную природу твердой поверхности, т. е. условия ее избирательного смачивания на границе двух антиполярных жидкостей вода — масло. В результате такой ориентированной адсорбции поверхностно-активных веществ происходит гидрофобизация первоначально гидрофильных твердых поверхностей и, наоборот, гидрофилизация первоначально гидрофобных поверхностей. При этом особенно резко выражен эффект гидрофобизации он усиливается химической связью — фиксацией полярных групп поверхностно-активных веществ на соответствующих участках твердых поверхностей. Достаточно длинные углеводородные цепи, ориентированные при этом наружу, вызывают несмачивание такой поверхности водой или избирательное вытеснение воды с такой поверхности неполярной жидкостью (маслом). Такими гидрофобизато-зами являются прежде всего флотационные реагенты-собиратели. 4х задача состоит в том, чтобы в результате избирательной химической адсорбции или соответствующей поверхностной химической реакции понизить смачивание водой поверхности определенных твердых частичек, например минерала. Именно такие частички и прилипают к пузырькам воздуха в суспензии (пульпе) флотационной машины с образованием краевого угла, наибольшее гистерезисное значение которого определяет интенсивность прилипания (силу отрыва). На неокислен-ных металлах и сульфидах такими гидрофобизаторами бывают поверхностно-активные вещества со специфическими химически адсорбирующимися полярными группами, которые содержат двухвалентную серу или фосфор (например, алкил- и арилксантогенаты, тиофосфаты с металлофильными группами). [c.68]

    Растворимость. Растворение — это химическая реакция, если растворение сохфовождается большим тепловым эффектом. Если же растворение не связано с заметным тепловым эффектом, то это — физический процесс смешения веществ. Все углеводороды практически нерастворимы в воде, т. е. являются веществами гидрофобными ( отталкивающими воду). Они растворяются (смешиваются) только в слабополярных органических растворителях, т. е. друг в друге, например, гексан в бензоле, циклогексане и наоборот, а также в эфире. Слабее они растворяются в метаноле и этаноле. [c.378]

    Факторы, обусловливающие влияние мицелл на химические реакции, могут быть разделены на два типа в соответствии с их физи— ксь-химической природой 1) изменение реакционной способности веществ при переносе их из воды (ипи, в общем случае, из объемной фазы) в мицелпярную фазу и 2) концентрирование реагентов в мицелпярной фазе см. уравнение (9). Эффекты первого типа характеризуются отношением констант скоростей кт/к), и могут быть обусловлены влиянием микроокружения (включая электростатическое взаимодействие переходного состояния реакции с поверхностным зарядом мицеллы) и взаимной ориентацией реагентов в мицелле. Вклад концентрирования реагентов в мицеплярные эффекты в основном определяется эффективностью ионных и гидрофобных взаимодействий между молекулами реагентов и мицеллами. Эффект сдвига кажущегося значения рКа ионогенного реагента фактичес— [c.236]


    Три важных фактора — индуктивный эффект, эффект поля и резонансный эффект — могут сильно влиять на поведение органических кислот и оснований, включая и биологически важные а-аминокислоты. В водном растворе, обычной среде нротекания биологических реакций, эти эффекты обусловливают большое разнообразие свойств, так что процессы диссоциации могут происходить во всем диапазоне pH. Это вал<но, потому что белки, построенные из аминокислот, в зависимости от своего аминокислотного состава могут принимать участие в кислотно-основных превращениях. Действительно, в упрощенном виде диссоциацию аминокислот можно рассматривать как миниатюрную модель диссоциации белка. В биохимических реакциях важные функции выполняют белки, и аналогия с аминокислотами может слу кить основой для понимания процессов передачи протонов. Однако такая модель слишком упрощена. Она не учитывает кооперативные взаимодействия. Например, как поведет себя лизин при диссоциации под действием линейно-расположенных положительно заряженных аминокислотных остатков, входящих в состав белка Далее, каким образом близко расположенная гидрофобная область белковой молекулы (т. е. область с более Ш13-кой диэлектрической проницаемостью) влияет на ее диссоциацию в данном химическом процессе То, что в этом случае можно ожидать значительных изменений, видно из поведения глицина при диссоциации в среде с низкой диэлектрической проницаемостью например, в 95%-ном этаноле (рКа карбоксильной группы глицина равен 3,8, а аминогруппы 10,0). Можно было бы подумать, что в этом случае но кислотности глицин близок к уксусной кислоте, но это не так, поскольку для последней р/( равен 7,1. [c.42]

    Мицеллярный катализ представляет собой особый тип катализа. Известно, что мицеллы, образованные ПАВ при достаточно высоких концентрациях в вод-нсми растворе, способны изменять скорость хямических реакций в результате того, что реагирующие компоненты притягиваются к поверхности мицелл, и вызванный этим эффект концентрирования приводит к более быстрой реакции. Реагенты могут взаимодействовать с мицеллами различными путями находиться внутри их гидрофобной оболочки, адсорбироваться в поверхностном слое за счет электростатических взаимодействий и т. д. Несмотря на то что концентрация мицелл не меняется в ходе реакции, мицеллы не являются катализаторами в строгом смысле, так как они не участвуют ни в какой стадии реакции и каталитических циклах. Таким образом, данный эффект имеет скорее физическую, а не химическую природу. [c.347]

    Ферменты, присоединенные к хорошо охарактеризованным носителям, могут служить простыми. моделями биологических систем, которые находятся в живых клетках. Действительно, синтетические полимерные матрицы точно не воспроизводят ситуацию in vivo, однако исследование таких моделей является важным этапом в рассмотрении ферментативного катализа как гетерогенного процесса [38]. Преж де всего они механически более устойчивы. Хорошо определенная химическая структура матриц иозволяет изучать влияние только одного параметра, такого, как влияние гидрофобности или влияние заряженных частиц на ферментативное действие. Можно также изучать влияние микроокружения матрицы, а также эффекты, возникающие благодаря различным локальным концентрациям субстрата, продукта, протонов эффекторов. и т. д. Эти различия в локальных концентрациях возникают в результате каталитической активности ферментов или влияния соседних молекул ферментов. Влияние микроокружения на активность и стабильность иммобилизованных ферментов детально обсуждается в разд. 12.2 и 12.3. Влияние, оказываемое матрицей, с трудом можно отличить от влияния микроокружения, создаваемого в результате собственно ферментативной реакции как самого фермента, так и других окружающих ферментов. [c.439]

    Книга состоит из трех больших глав. В первой рассмотрены солевые эффекты. Особый интерес представляет количественное описание влияния эффектов солей на коэффициенты активности электролитов и неэлектролитов, а также рассмотрение влияния на эти величины добавок неэлектролитов. Разобрана природа гидрофобных взаимодействий и дано описание влияния солевых эффектов на равновесия и скорости реакций различного типа. Вторая глава посвящена сольватации ионов в растворителях различной природы и ее роли в реакциях с участием анионов, ионов карбония, катионов металлов, амбидент-ных анионов, а также влиянию сольватации на кислотно-основные равновесия. В последней главе рассматриваются явления ассоциации ионов, включая мицеллообразование, теоретические модели для описания этого явления, экспериментальные методы его изучения, термодинамику ассоциации ионных пар, структуру ионных пар и более высоких ассоциатов и наиболее важный вопрос - влияние ионной ассоциации на различные химические процессы. Таким образом, даже краткое перечисление вопросов, рассмотренных в книге, показывает, сколь полно и всесторонне представлены в монографии многообразные аспекты процессов сольватации. [c.6]


Смотреть страницы где упоминается термин О гидрофобных эффектах в химических реакциях: [c.49]    [c.161]    [c.238]   
Смотреть главы в:

Термодинамика водных растворов неэлектролитов -> О гидрофобных эффектах в химических реакциях




ПОИСК







© 2025 chem21.info Реклама на сайте