Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Золи определение концентрации

    Явления, связанные с рассеянием света, широко используются для установления формы и размеров частиц. Аналитический метод определения концентрации частиц, основанный на измерении интенсивности рассеянного света, называется нефелометрией. Схема нефелометра показана на рис. 66. В одну из его кювет наливают эталонный раствор, в другую — испытуемый. Интенсивность света, рассеиваемого суспензиями или золями в обеих кюветах, можно уравнять, подобрав соответствующую высоту Ь кюветы с испытуемым раствором. Отношение высот двух кювет обратно пропорционально отношению концентраций содержащихся в них частиц дисперсной фазы. [c.161]


    Приготовляют золь определенной концентрации. На фотоэлектроколориметре измеряют его оптическую плотность D npn определенной длине волны К в среде). Расчет размера частицы производят следующим образом. По найденному значению D рассчитывают мутность т [уравнение (16)] концентрацию золя с, выраженную в e M , переводят в Соб [уравнение (21)]. Далее [c.43]

    Приготовляют золь определенной концентрации. По формуле (21) определяют Сд . Затем измеряют О, по формуле (16) вычисляют 1 и переводят в [т] (22). По формуле (24) вычисляют По полученным значениям [т] и с помощью номограмм находят искомые величины I и I. [c.45]

    Основными показателями качества дифенилолпропана, принятыми в США, Японии, Голландии, Франции и других странах, являются температура кристаллизации, содержание свободного фенола, железа, золы и летучих веществ, цвет расплава дифенилолпропана и цвет его раствора в этаноле определенной концентрации. Допускается содержание железа (по нормам разных стран) от 5 до 10 частей на 1 млн., температура кристаллизации может колебаться от 154 до 156 °С, цвет расплава — в интервале 30—120 единиц по шкале АРНА. [c.160]

    Для частиц данного размера интенсивность рассеянного света прямо пропорциональна концентрации золя. Это положение можно использовать для определения концентрации дисперсно фазы с помощью измерения светорассеяния золя. Однако следует учесть, что при очень больших концентрациях возникает многократное рассеяние и в уравнение Рэлея необходимо вводить соответствующие поправки. [c.36]

    Некоторые исследователи объясняют коагуляцию золя при концентрировании увеличением числа столкновений частиц друг с другом. Однако это объяснение мало соответствует тому факту, что золи проявляют способность к спонтанной коагуляции только тогда, когда их концентрация превышает определенное критическое значение. Можно полагать, что неустойчивость коллоидной системы выще определенной концентрации объясняется увеличением в единице объема, содержания не только чужеродного электролита, но и самих коллоидных частиц, которые должны рассматриваться как поливалентные ионы, а также и содержания соответствующих противоионов. Подобное допущение вполне вероятно. [c.311]

    РАБОТА 95. ОПРЕДЕЛЕНИЕ КОНЦЕНТРАЦИИ ЗОЛЯ МЕТОДОМ [c.272]

    Одной из форм существования коллоидов и полимеров является студнеобразное состояние, промежуточное между жидким и твердым состояниями. Застудневание коллоидных растворов — следствие нарушения агрегативной устойчивости, приводящее к структурообразованию. На процесс застудневания оказывают влияние концентрация раствора, форма частиц или молекул, температура, действие электролитов и ПАВ. Растворы ВМВ застудневают и плавятся в определенном интервале температур, причем температура застудневания обычно несколько ниже температуры плавления (имеет место гистерезис). Структурообразование в золях возможно только при определенной концентрации электролитов, которая резко уменьщается с увеличением заряда вводимых ионов. Ускорению застудневания растворов ВМВ способствуют небольшие концентрации электролитов. Высокие концентрации ПАВ препятствуют застудневанию, так как происходит полный разрыв связей между частицами. [c.474]


    В настоящее время для определения концентрации частиц дисперсной фазы вместо обычного ультрамикроскопа часто используют поточный ультрамикроскоп, разработанный Дерягиным и Власенко. В поточном ультрамикроскопе фиксируется ЧИСЛО частиц, проходящих за единицу времени в поле зрения микроскопа при течении дисперсной системы, что позволяет быстро определять среднюю концентрацию частиц в золе. Применение оптико-электронных систем [c.171]

    Такие ПАВ, которые при определенной концентрации могут образовывать в растворе мицеллы, называются коллоидными ПАВ. Золи коллоидных ПАВ являются типичными лиофильными золями. При разбавлении растворов коллоидных ПАВ мицеллы распадаются на молекулы (или ионы). Изменяя условия существования такой равновесной системы (температуру, концентрацию), можно получить или истинный (гомогенный) раствор, или коллоидный (гетерогенный) раствор. Подобным свойством обладают не только растворы мыл и других моющих веществ, но и растворы дубящих веществ (таннидов) н некоторых красителей. [c.216]

    Коллоидные системы можно получить в результате химических реакций почти всех известных типов реакций обмена, восстановления, окисления, гидролиза и т. д. Следует, однако заметить, что коллоидные системы при проведении реакций, способных давать золи, образуются не всегда, а лишь при определенных концентрациях исходных веществ, порядке их смешения, температуре и соблюдении некоторых других условий..  [c.246]

    Некоторые исследователи объясняют коагуляцию золя при концентрировании увеличением числа столкновений частиц друг с другом. Однако это объяснение-мало соответствует тому факту, что золи проявляют способность к спонтанной коагуляции только тогда, когда их концентрация превышает определенное критическое значение. Можно полагать, что неустойчивость коллоидной системы выше определенной концентрации объясняется увеличением в единице объема содержания не только чужеродного электролита, но и самих коллоидных частиц, которые должны рассматриваться как поливалентные ионы, а также и содержания соответствующих противоионов. Подобное допущение вполне вероятно. В самом деле, как показал, еще Дюкло, коллоидные частицы вносят свою долЮ в электропроводность системы, и поэтому есть все основания думать, что заряд, этих частиц должен учитываться при вычислении ионной силы раствора. [c.311]

    На этом основано применение измерений светорассеяния для определения концентрации золя с частицами постоянного размера. [c.92]

    Способ 1 [1]. Очень устойчивый монодисперсный золь серы получают при сливании подкисленных растворов сульфида и сульфита натрия определенной концентрации с последующей пептизацией. [c.391]

    При определенной концентрации электролитов происходит коагуляция золей, причем пороги ее быстро уменьшаются с увеличением числа углеродных атомов длинноцепочечных ионов. Некоторые экспериментальные данные представлены в табл. 58 в сопоставлении с данными для неорганических электролитов. [c.255]

    Особо остановимся на флокуляции дисперсий неионными ВМС при введении реагента по методу двойной добавки. В этих условиях флокуляция — как это показано на примере золей Au и Agi, содержащих ПВС и ПЭО [129, 130],— наступает лишь при достижении определенной концентрации электролита [c.137]

    Смысл утверждения о термодинамической устойчивости растворов высокомолекулярных соединений заключается в том, что при заданных переменных состоянию равновесия отвечает раствор определенной концентрации и система обязательно (пусть через большой промежуток времени) придет к этому состоянию, чего мы не можем предсказать для термодинамически неустойчивого раствора, например лиофобных золей. [c.249]

    В большинстве случаев предпочтительнее использовать хлор. Применение сульфата алюминия сопряжено с некоторыми неудобствами. Так, в этом случае необходимо готовить и хранить в специальных емкостях раствор А12(504)з строго определенной концентрации тщательно поддерживать соотношение количеств жидкого стекла и сульфата алюминия при активировании, так как введение даже небольшого избытка последнего приводит к резкому снижению pH и быстрому застудневанию золя (рис. 45, кривая /) непрерывно перемешивать золь не только в период вызревания, но и во время хранения разбавленного золя во избежание выпадения в осадок взвеси алюмосиликатов. Кроме этого полученный золь склонен к образованию гелеобразных отложений в емкостях, трубопроводах и арматуре. [c.159]

    Хотя однородные частицы определенных типов латексов и вирусов были известны еще до 1950 г., примеров неорганических систем с однородными частицами в области размеров 100—500 нм, необходимой, чтобы продемонстрировать интерференционное окрашивание, было мало, если они вообще имелись. Изодисиерсные золи приготовляли из золота, серебра, серы, хлорида серебра и сульфата бария, но не из кремнезема [389]. В более ранних исследованиях попытки приготовить частицы кремнезема в области указанных размеров были безуспешны, поскольку не было известно, каким образом повысить размер частиц. Фрейндлих [390] пробовал получить стабильные золи с концентрацией свыше 10 % Si02, однако был введен в заблуждение тем, что добавление щелочи, которая, как он знал, должна была стабилизировать отрицательно заряженные частицы, приводило лишь к гелеобразованию. [c.553]


    Известно, что при добавлении к красному золю золота некоторого количества Na l начнется коагуляция золя, частички золота будут укрупняться, что приведет к изменению окраски золя — он станет синим. Таким образом, за процессом коагуляции золя золота можно наблюдать невооруженным глазом на стадии, когда еще нет осадка. Чтобы была возможность сравнивать защитное действие разных ВМС, необходимо добавлять всегда к одному и тому же золю определенной концентрации одинаковое количество коагулянта. [c.144]

    Тпксотропия — явление довольно распространенное. Оно наблюдается в золях V2O5, WO3, РегОз, в различных суспензиях бентонита, в растворах вируса табачной мозаики, миозина. Причем тиксот-ропныегели легче всего образуются у золей, обладающих асимметричным строением частиц (например, палочкообразной формы). Тиксотропные структуры возникают лишь при определенных концентрациях коллоидных частиц и электролитов. Для обратимого (тиксотропного) застудневания требуется определенное значение дзета-потенциала, лежащее выше критического. В этом случае заряд коллоидных частиц хотя и понижен, но не в такой степени, что- бы начался процесс коагуляции. В этих условиях уже становятся заметными силы взаимодействия между отдельными частицами дис- персной фазы, они образуют своеобразную сетку, каркас. При сильном встряхивании связь между частицами дисперсной фазы нарушается — тиксотропный гель переходит в золь. В состоянии покоя связи в результате соударения частиц при броуновском движении восстанавливаются, золь вновь переходит в тиксотропный гель и т. д. [c.379]

    Для определения концентрации или размеров частиц золей, слабо рассеивающих свет, иногда также можно использовать не-фелометрические методы исследования. В этом случае след перейти от видимой части спектра к ультрафиолетовым лу>"  [c.52]

    При достижении определенной концентрации двойных частиц их распады уравновешивает процесс слипания одиночных частиц, вследствие чего численная концентрация золя становится постоянной. В некоторый момент к одной из двойных частиц прилипает третья частица, образуя тройнук> частицу. Энергия связи каждой из трех частиц образовавшегося агрегата в два раза больше, чем у частицы, входящей в двойную частицу. Поэтому такая тройная частица имеет мало шансов распасться. Одновременно происходит дальнейший рост агрегатов за счет присоединения новых частиц. И действительно, визуальные наблюдения под микроскопом показали, что в некоторый момент среди сравнительно слабо видимых частиц (по вспышкам в поле зрения поточного ультрамикроскопа) появляются все более яркие и коагуляция все более ускоряется. Этим объясняется форма кривых с перегибом. При более высоких концентрациях электролита вследствие снижения энергетического барьера и углубления потенциальной ямы горизонтальные участки графика укорачиваются и, наконец, исчезают, но 5-образная форма кривых сохраняется. Таким образом, при изучении коагуляции необходимо учитывать не только процессы агрегации, но и распада агрегатов. [c.268]

    Образование структуры, охватывающее весь объем системы, возможно только при определенной концентрации частиц, достаточной для построения цельного каркаса. Так, при комнатной температуре Ре(ОН)з превращается в гель при добавлении к нему определенного количества электролита, если содержание РезОз в растворе не менее 1%, а золь пятиокиси ванадия переходит в гель при содержании в нем около 0,05% V2O5. [c.366]

    В определенной области концентраций уравнение Ламберта — Бера применимо и к золям. Для этого одно из двух оптических явлений (опалесценция или поглощение света) должно доминировать. Примером могут служить гидрозоли кубовых и сернистых красителей, органических пигментов и т. д. — ярко окрашенных, но слабо мутных. [. Наоборот белые золи Т102, 8102, А1(0Н)з, латексы бесцветны, но мутны. В этом случае Dx также будет расти с концентрацией линейно, что дает возможность применить оптический метод для определения концентрации золей. Для определения Ох служат различные колориметры и фотометры. [c.40]

    Для определения концентрации частиц дисперсной фазы вместо обычного ультрамикроскопа часг(5 используют разработанный Б. В. Дерягишлм и Г. Я. Власенко поточный ультрамикроскоп, в котором фиксируется число частиц, проходящих за единицу времени в поле зрения микроскопа при течении дисперсной системы, что позволяет быстро определять среднюю концентрацию частиц в золе. Применение оптико-электронных систем регистрации интенсивностей светового пот(зка от отдельных частиц позволяет получать и кривые распределения частнц по размерам. [c.207]

    Коагулирующая способность смесей электролитов, из которых каждый вызывает коагуляцию золя при определенной концентрации, не всегда аддитивна. В сравнительно редких случаях каждый электролит действует соответственно своей коагулирующей способности и их действие суммируется, т. е. н1, блюдается аддитивность коагулирующего действия. Так, аддитивность наблюдается для электролитов KG1 и Na l например, если порог коагуляции для данного [c.234]

    В растворах перечисленных выше золей с вытянутыми чa тицa ш наличие сил межчастичного притяжения на больших расстояниях приводит при определенных концентрациях золей и электролитов к ориентированной агрегации частиц в вице оптически анизотропных образований веретенообразной формы, называемых тактоидами. Расстояния между чa тицч п в тактоидах дюгут достигать нескольких сотен ангстреглов. [c.144]

    При определенной концентрации кремнезема золи кремневой кислоты, приготовленные из силикатов натрия с более высокими отношениями 5102 Ыа20, испытывают более медленное гелеобразование, вероятно, вследствие более низкой концентрации ионов натрия. [c.702]

    Явление тиксотропии характерно для многих золей. Тэ1К, золи РегОз, Рз, УгОб при определенных концентрациях коллоидных частиц и электролитов многократно могут переходить в гели. [c.168]

    Учитывая, что применение уравнения Эйнштейна для вычисления объема дисперсных частиц по величине внутреннего трения золей ограничивается лишь частичками, форма которых близка к шарообразной, А. В. Думанский для оценки гидрофильности коллоидных систем разрабатывает новые методы. Кроме того, известными методами определения связанной воды — дилатометрическим, калориметрическим и криоскопическим — невозможно определить истинное содержание связанной воды в объектах исследования. Поэтому А. В. Думанский в 1933 г. предложил рефрактометрический метод, основанный на определении концентрации сахара в коллоидном растворе, которая будэт всегда вышг исходной концентрации вследствие того, что связанная вода обладает свойством растворимости, в данном случае, сахара. [c.6]

    Выпускаемые промышленностью золи характеризуют по ины параметрам, чем те, что приняты для растворов жидкого стекла Общее содержание кремнезема определяют стандартными аналитическими методами. Другой важнейшей характеристикой яВ ляется размер частиц. Так как технология изготовления золе позволяет получать золи, достаточно однородные по размерам, ограничиваются обычно определением среднего диаметра части или связанной с ним удельной поверхности, принимая плотност1 кремнезема в частицах 2,2 г/см . Размеры частиц можно оценит по величине поглощения монохроматического света, например пр длине волны 400 нм. Для золей с концентрацией кремнезема мене 5% и размером частиц более 20 нм справедливо линейное соот ношение между оптической плотностью lg (/0//1) и процентнЫ- [c.78]

    Первой задачей являлось определение концентрации Н+-ионов в чистом золе. Так как АздВз-золь со временем меняет pH, в табл. 1 мы приводим ряд измерений за все время работы. В одной из граф таблицы приведены величины электропроводности золя в различное время и [Н+], высчитанные из электропроводности по формуле Паули [16 [Н+] = 1000х/( /н + г кои), где X — удельная электропроводность коллоидного раствора йи — подвижность Н+-И0Н0В при температуре измерения Укоп — подвижность коллоидных частиц, которая принималась равной 50. [c.38]

    Электронно-микроскопическое исследование туманов легко испаряющихся жидкостей представляет собой методически трудную, падавно еще, казалось, практически неразрешимую задачу. Некоторые попытки в этом направлении были предприняты уже давно [91] с целью определения концентрации золей металлов. Здесь следы микрокапель золей, высушенных на пленке, можно было видеть в электронном микроскопе благодаря тонкому слою белка, вводившегося в раствор в качестве защитного коллоида. [c.157]

    Растворы гидрофильных полимеров, будучи прибавлены в небольших количествах к лиофобным золям, защищают их от коагуляции электролитами. Так, например, при добавлении 0,01 мг желатины к 10 мл красного золя золота определенной концентрации можно защитить его от выпадения в осадок при добавлении 1 мл 10%-ного раствора МаС1. Это количество желатины (0,01 мг) называется золотым числом желатины. Таким же образом определяется золотое число других веществ. Защитное действие ряда веществ по отноидению к золю серебра называется серебряным числом, к золю железа — железным числом и т. п. Золотое и другие числа являются условной мерой защитного действия. Чем меньше золотое и другие числа данных веществ, тем сильнее их защитное действие. [c.114]

    Зольность определяется сжиганием и прокаливанием филыра с осядком после определения концентрации активного нла. Разница между весом сухого вещества активного ила и весом золы характеризует органическую часть активного ила - потерю при прокаливании. [c.554]

    При определении германия в золе в концентрации до 0,0002% 150 мг пробы смешивают со 150 мг буферной смеси, состоящей из 40% серы, 20% углекислого лития, 5% углекислого кадмия и 35% угольного порошка, и растирают в присутствии спирта или ацетона. Полученную смесь (100 мг) испаряют из малого камерного электрода длиной 25 мм (диаметр канала 3,5 мм, глубина 20 мм, толщина стенок 1,4 мм). Рабочий конец электрода заточен на усеченный конус и снабжен осевым отверстием диаметром 0,8—1 мм. Пробу вводят в полость электрода через дно, которое затем закрывают плотным тампоном из ваты, пропитанной раствором сернокислого аммония. Верхний электрод заточен на усеченный конус. Для анализа используют спектрограф ИСП-28 при ширине щели 0,015 мм. Спектры воз-буждают дугой переменного тока силой 14—15 а от генератора ДГ-2. Величина аналитического промежутка 3 мм, длительность экспозиции 60 сек. Спектры регистрируют на пластинках, спектрографических типа I чувствительностью 0,8—1,2 ед. Для приготовления эталонов двуокись германия вводят в угольный порошок или золу каменных углей. При концентрации 0,001% германия ошибка анализа составляет 8—10%, при меньших концентрациях 15—20% [240]. [c.213]


Смотреть страницы где упоминается термин Золи определение концентрации: [c.306]    [c.90]    [c.96]    [c.144]    [c.190]    [c.12]    [c.140]   
Химия кремнезема Ч.1 (1982) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Золь

Концентрация определение

Мер золит

золы



© 2025 chem21.info Реклама на сайте