Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Сверхтонкая структура от ядер

    Сверхтонкое расщепление на ядрах лиганда зависит от контактного взаимодействия Ферми (F. С.), дипольного взаимодействия с ионом металла (DIP), дипольных эффектов, обусловленных электронной плотностью на р-орбитали лиганда (LDP), и псевдоконтактного вклада иона металла (LP ), возникающего за счет взаимодействия орбитального углового момента неспаренного электрона с ядерным спином лиганда. Если сверхтонкая структура, обусловленная лигандом, разрешена, то последний член обычно мал по сравнению с другими. При наличии интенсивного спин-орбитального взаимодействия следует ожидать большого псевдоконтактного вклада, но релаксационные эффекты осложняют наблюдение спектра ЭПР и. следовательно, сверхтонкого расщепления на лиганде. Значения А. и А выражают с помощью уравнений (13.38) и (13.39)  [c.231]


    Для атомов и молекул со спином /г во внешнем магнитном поле возникает не два, а 25 + 1 уровней, отличающихся значением спинового магнитного числа, и соответственно в спектре ЭПР не одна, а несколько близлежащих полос — так называемая тонкая структура спектра ЭПР, связанная с мультиплетностью уровня. Если к тому же ядерный спин отличен от нуля, то у ядра существует собственное магнитное поле, в котором каждая линия тонкой структуры спектра ЭПР расщепляется на 2У + 1 компонент (сверхтонкая структура спектра). [c.148]

    Сверхтонкая структура спектров ЭПР дает сведения о распределении электронной плотности в радикале, взаимодействии электрона с ядрами ближайших атомов. Метод ЭПР позволяет измерять концентрации радикалов. Минимальное количество радикалов, обнаруживаемое этим методом на современных радиоспектроскопах, составляет 10 моль, т. е. около 101 частиц в образце. [c.25]

    Помимо экранирования Яэфф зависит от любых магнитных полей, дополнительно воздействующих на частицу. Если соседние ядра обладают магнитными моментами, то создаваемое ими локальное магнитное поле также будет изменять Н ,фф- Это локальное поле будет зависеть от числа окружающих частиц н от магнитного момента. Такое влияние соседних частиц расщепляет резонансную линию и определяет ее сверхтонкую структуру. [c.260]

    Вообще, при наличии п эквивалентных ядер со спином I, взаимодействующих с электронным спином, мультиплетность сигнала ЭПР равна (2и/+1). Отношение интенсивностей компонент мультиплета такое же, как отношение коэффициентов биноминального разложения (л -Ь ]) (см. треугольник Паскаля, табл. 1.5), когда п>1, а при п=1 компоненты мультиплета имеют одинаковую интенсивность. На рис. П1.6 показан спектр ЭПР анион-радикала бензола, представляющий септет с константой а=3,75-10 Т и соотношением интенсивности компонент 1 6 15 20 15 6 1, здесь электрон делокализован по бензольному кольцу и одинаково взаимодействует со всеми шестью протонами. На рис. П1.7 схематически показана сверхтонкая структура спектра ЭПР для системы, содержащей один неспаренный электрон, который взаимодействует с двумя ядрами одно со спином /= /2, а другое со спином /= /2. Спектр представляет квартет дублетов с одинаковой интенсивностью всех линий. В общем случае при взаимодействии электрона с несколькими наборами эквивалентных ядер число линий в спектре ЭПР будет равно произведению [c.61]

Рис. 1И.7. Сверхтонкая структура спектра ЭПР при взаимодействии неспаренного электрона с двумя ядрами (/а = 2 и 1 =Чг) Рис. 1И.7. <a href="/info/261019">Сверхтонкая структура спектра</a> ЭПР при взаимодействии <a href="/info/9261">неспаренного электрона</a> с двумя ядрами (/а = 2 и 1 =Чг)

    В том случае, когда ядерные уровни мессбауэровских атомов, рассеивающих у-кванты кристалла, имеют сверхтонкую структуру, обусловленную магнитными или электрическими взаимодействиями ядра с окружающими его электронами, разрешенные мессбауэровские переходы имеют особенность, состоящую в существовании угловых зависимостей интенсивности компонент мессбауэровского спектра относительно направления сверхтонких полей на ядре. В результате, если в рассеивающем объекте имеются ядра с разными направлениями градиента электрического поля или внутреннего эффективного поля, то ядерная амплитуда рассеяния для таких ядер будет различна, что может привести к появлению [c.230]

    Наиболее простым спектром ЯМ.Р, состоящим из одного сигнала, обладают молекулы, все магнитные ядра которых эквивалентны и не содержат магнитных ядер другого изотопа. Спектр молекул, которые содержат два и большее число различных ядер, совсем не обязательно должен состоять из такого же числа резонансных сигналов (пиков). В качестве примера могут служить спектры ПМР уксусной кислоты и уксусного альдегида (рис. 28 . Оба соединения содержат два типа эквивалентных протонов и строение их сходно, поэтому можно было бы предполагать различие в основном в химических сдвигах отдельных сигналов. В действительности же спектры ПМР этих соединений существенно различаются уксусная кислота дает два одиночных сигнала, а уксусный альдегид дает два сигнала, обнаруживающие сверхтонкую структуру. [c.75]

    Таким образом, сущность спин-спинового взаимодействия сводится к тому, что данное ядро или группа эквивалентных ядер через связующие электроны получает информацию о возможных спиновых состояниях соседней группы эквивалентных ядер в виде небольших составляющих магнитного поля, которые налагаются на внешнее магнитное поле Яц. В результате этого сигналы ЯМР высокого разрешения приобретают сверхтонкую структуру. Вид этой структуры зависит от числа и электронного окружения магнитных ядер, связанных с данным ядром. [c.86]

    Сверхтонкая структура. Если в соединении кроме неспаренных электронов имеются ядра, обладающие спином / и соответствующим магнитным моментом (хл/, то возможно взаимодействие между электронным и ядерным магнитными моментами, которое приводит к расщеплению одиночной линии ЭПР на определенное число компонент. Такое взаимодействие называют сверхтонким, спектр имеет сверхтонкую структуру (СТС). СТС дает сведения о делокализации электрона, характерная СТС используется для идентификации соединений. [c.288]

    Сверхтонкая структура. Если в молекуле имеются ядра, обладающие магнитным моментом (/ Ф 0), то с ними может взаимодействовать магнитный момент неспаренного электрона. Ядро со спином / во внешнем магнитном поле имеет 21 1 возможностей ориентации и дает столько же вкладов в В . В этом случае на неспаренные электроны действуют 21 Ч- 1 магнитных полей, в которых может происходить резонансное поглощение наблюдают расщепление линий на 2/ + 1 равноудаленные линии, которые рассматривают как сверхтонкую структуру. [c.267]

    Сверхтонкая структура ЭПР может наблюдаться только в случае, если спин ядра не равен нулю. Поскольку в молекулах углеводородов содержится изотоп углерода с нулевым спином, спектр ЭПР можно наблюдать лишь от взаимодействия электрона с протоном. Атомы водорода, присоединенные к зр2-гибридизованным атомам углерода, лежат в плоскости, которая является узловой для я-электронных функций. На этой плоскости 2рг-А0 обращается в нуль и з-орбитали атома водорода не включаются в МО я-системы. Поэтому, строго говоря, описание сверхтонкой структуры ЭПР при взаимодействии электрона с протоном в я-элект-ронном приближении невозможно. Тем не менее, учитывая простоту расчетов этого приближения, а также то, что наиболее изменчивой частью электронных облаков являются именно я-орбитали, а потому их изменения наиболее существенно влияют на величину зарядов на атомах, во многих )асчетах спектров ЭПР пользуются моделью я-электронов. При этом считается, что взаимодействие неспаренного элект- [c.116]

    Изучая сверхтонкую структуру спектра ЭПР, мы отмечали, что магнитный момент ядра Мяд связан с его, спином 8яд соотношением [c.117]

    Рассмотрим сверхтонкую структуру каждой группы. Квинтет может получиться в результате воздействия на ядро четырех или даже шести соседних протонов. Две крайние компоненты могут быть слишком слабы по сравнению с остальными и не видны в спектре. Поэтому необходимо проверить соотношение интенсивностей. Отношение интенсивностей при влиянии четырех протонов должно быть 1 4 6 4 1 и для шести протонов 1 6 15 20  [c.264]

    Наряду с тонкой структурой в спектрах ЭПР наблюдается сверхтонкая структура (СТС). Объясняется СТС взаимодействием магнитного момента неспаренного электрона с магнитным моментом атомного ядра. Возникновение СТС рассмотрим на примере парамагнитного иона u +, для которого S = /2 (один неспаренный электрон )и /=3/2. В магнитном поле оба уровня с Шз= 72 расщепляются на четыре подуровня, энергия которых меняется с увеличением поля линейно (рис. 93). При фиксированной энергии СВЧ-источника переходы с Amj = Q и Ams=l будут осуществляться при четырех значениях внешнего магнитного поля, результатом чего является возникновение СТС. Все линии СТС имеют одинаковую интенсивность, а потому они легко отличаются от сигналов тонкой структуры. [c.191]


    Рассмотрим сверхтонкую структуру каждой группы. Квинтет может получиться в результате воздействия на ядро четырех или даже шести соседних протонов. Две край- [c.127]

    Каждый радикал, вообще говоря, имеет свой характеристический -фак-тор, поэтому радикалы имеют разные частоты (Иц. За счет сверхтонкого взаимодействия неспаренных электронов с магнитными ядрами радикала уровни энергии спина неспаренного электрона расщепляются. В результате в спектре ЭПР радикала появляется сверхтонкая структура (СТС). Каждая компонента спектра соответствует определенной конфигурации ядерных спинов. Ядерные спины в разных конфигурациях создают разные локальные поля для спина неспаренного электрона и, как результат, для разных конфигураций ядерных спинов электронный спин радикала имеет разную резонансную частоту. [c.91]

    Если -факторы радикалов равны, то интегральный эффект ХПЭ не формируется. Но за счет сверхтонкого взаимодействия может сформироваться мультиплетный эффект ХПЭ. Рассмотрим РП, в которой разностью -факторов радикалов можно пренебречь, но есть сверхтонкое взаимодействие с одним ядром со спином 1/2. Разобьем ансамбль всех РП на два подансамбля. В одном подансамбле спин ядра имеет проекцию +1/2, а в другом - проекцию -1/2. Соответственно в спектре ЭПР радикала А, содержащего магнитное ядро, появляется сверхтонкая структура, линия ЭПР расщепляется на дублет. В рассматриваемой ситуации одна компонента СТС соответствует резонансной частоте, которая меньше, чем резонансная частота спина-партнера по паре В (см. рис. 6). Другая компонента СТС соответствует резонансу на частоте, которая больше частоты резонанса для I спина-партнера В без магнитного ядра. В каждом подансамбле РП радикалы выносят из клетки интегральную поляризацию. В подансамбле РП с положительной проекцией ядерного спина интегральная поляризация спинов пары дается формулами, которые следуют из приведенных выше выражений  [c.102]

    Обычно радикалы имеют магнитные ядра. Сверхтонкое взаимодействие расщепляет линии ЭПР, оно вызывает сверхтонкую структуру спектра ЭПР, это взаимодействие индуцирует S-T переходы в РП (СТВ-механизм). В сильных магнитных полях приведенные выше результаты могут быть легко обобщены на РП, в которых проявляется СТВ-механизм синглет-триплетной конверсии пар. При наличии СТВ ансамбль РП можно разбить на подансамбли с разными конфигурациями ядерных спинов. В каждом подансамбле радикалы пары имеют резонансные частоты, которые определяются конфигурацией т ядерных спинов. [c.128]

    Строение внутр. оболочек А., электроны к-рых связаны гораздо прочнее (энергия связи 10 -10" эВ), проявляется лишь при взаимод. А. с быстрыми частицами и фотонами высоких энергий. Такие взаимод. определяют характер рентгеновских спектров и рассеяние частиц (электронов, нейтронов) на А. (см. Дифракционные методы). Масса А. определяет такие его физ. св-ва, как импульс, кинетич. энергия. От механических и связанных с ними магн. и электрич. моментов ядра А. зависят нек-рые тонкие физ. эффекты (ЯМР, ЯКР, сверхтонкая структура спектральных линий, см. Спектроскопия). [c.216]

    Особое значение имеет сверхтонкая структура основного состояния атома водорода Поскольку спин ядра (протона) i i/2, имеем 2 [c.60]

    В то. че время взаимодействия неспаренного электрона свободного радикала с магнитными ядрами самого радикала ничем не затруднялись бы и в спектре появилась бы сверхтонкая структура. [c.154]

    Сколько будет наблюдаться линий в изображенном ниже спектре ЭПР порошкообразного образца диэтилдитиофосфината меди (для Си I = 3/2) Указание Л, (Си) 5 5Л (Си). Какие другие ядра в состоянии дать сверхтонкую структуру  [c.252]

    В связи с различными возможностями ориентации ядра А под влиянием магнитного -момента ядра В со спином / линия ядра А расщепляется на мультиплет (2/+1). В присутствии п эквивалентных соседних ядер с ядерным спином I число состояний становится равным 2/г/+1. Распределение интенсивности линий зависит от статистического распределения ядерных спиновых состояний и для ядер с /= /2 соответствует последовательности биномиальных коэффициентов. В качестве примера рассмотрим сверхтонкую структуру спектра молекулы РРз. Резонансная линия ядра Р под влиянием соседного ядра Р со спином /2 расщепляется на две линии (рис. А.27, а). Резонансная линия ядра фосфора под действием трех одинаковых ядер P со спином /= /2 дает квартет с отношением интенсивностей 1 3 3 1 (рис. А.27, б). [c.73]

    На рис. III.16 показаны спектры ЭПР и ДЭЯР замороженного раствора сэндвиче-вого комплекса титана с цик-лооктатетраеном и циклопен-тадиеном. Этот комплекс представляет собой -систему с осью симметрии Соо (свободное вращение колец), в спектре ЭПР которой сверхтонкая структура не разрешается. В эксперименте ДЭЯР устанавливается напряженность постоянного поля, соответствующая сигналу ЭПР для g 1 (помечена стрелкой), и ведется сканирование по области частот ПМР ( Н) при данной напряженности. Таким образом, получается спектр двойного электрон-протонного резонанса ( Н ДЭЯР) с хорошо разрешенной структурой. На рис. II 1.16, где представлен этот спектр, хорошо видны два широких дублета, из которых непосредственно определяется значение параллельной компоненты константы СТВ а л для взаимодействия делокализо-ванного неспаренного электрона с протонами циклов gHg и С5Н5 (центральная группа линий обусловлена протонами растворителя— толуола). Если провести такой же эксперимент с установкой сигнала ЭПР, соответствующего g x, то получим перпендикулярные компоненты взаимодействия и определим значение а , после чего можно оценить спиновую плотность на ядрах. [c.81]

    ОТ >гла 9 получают информацию о геометрии радикала и кристалла. Аниго-тропную сверхтонкую структуру нельзя наблюдать только у 5-электронов, так как они характеризуются шаровой симметрией распределения заряда. Наблюдаемые спектры поликристаллических образцов возникают вследствие наложения спектров всех беспорядочно ориентированных кристаллов и характеризуются значительным уширением линий. Диполь-дипольное взаимодействие свободных радикалов в растворе обусловливается молекулярным движением. Если вязкость раствора препятствует статистическому движению молекул, то линии сверхтонкой структуры уширяются, так как диполь-дипольное взаимодействие осуществляется частично. Изотропное или ферми-контактное взаимодействие можно объяснить только на основании квантовой механики. Предполагается, что вероятность пребывания электрона вблизи ядра ф(0) отлична от нуля, что и является причиной возникновения сверхтонкой структуры. Это может иметь место только для электронов, расположенных на 5- или сг-орбиталях. Тогда константа сверхтонкого взаимодействия а для этого изотропного взаимодействия равна (а единицах энергии) [c.268]

    Спектры мономера н днмера, имеюидего два эквивалентных атома Р, представлены одной линией, Химический сдвиг для мономера равен —1,3, т. е. введе1Н1е в молекулу фосфорной кислоты одного алкила несколько смещает сигнал ЯМР в сторону более слабого поля (что означает, что экранирующее поле ослабевает). Для димера, в котором атомы Р участвуют в образовании ангидридной связи, наблюдается сильное экранирование, приводящее к химическому сдвигу 10,3 м. д. В спектре тримера видиы две группы линий. Одна из них, с химическим сдвигом 11,6 м. д., соответствует крайним атомам фосфора, образующим одну ангидридную связь. Сигнал среднего атома, образующего две ангидридные связи, дополнительно смещен в сильное поле еще на 10 м. д. и находится при б = 21,6 м. д. В случае тримера отчетливо проявляется сверхтонкая структура спектра. Сигнал каждого нз крайних атомов Р, взаимодействующих с соседним атомом Р, расщеплен па два. Сигнал среднего атома Р, взаимодействующего с двумя ядрами Р, т. е. с системой с суммарным снином 1, расщеплен на три в соответствии с тремя возможны.ми ориентациями. [c.43]

    Если ядра парамагн. частиц имеют магн. момент (Н, О, С, - М, М, 0, и др.), появляется дополннт. сверхтонкое взаимодействие (СТВ) неспаренного электрона с ядрами. Зееманопские уровни при этом расщепляются и появляется сверхтонкая структура спектров ЭПР. Расстояние между компонентами этой структуры зависит от энергии СТВ, к-рая складывается из двух частей — изотропной и анизотропной. Анизотропная часть обусловлена дипольным взаимод. электрона и ядра и зависит от угла между осью р-орбитали неспарениого электрона и направлением пост. магн. поля. Изотропная часть не зависит от ориентации радикала и определяет энергию магн. взаимод. ядра с неспаренным электроном на атомной 5-орбитали или молекулярной а-орбитали. Анизотропное СТВ проявляется в спектрах радикалов только в тв. телах в жидкостях опо отсутствует, поскольку быстрое мол. вращение усредняет ориентацию радикалов относительно внеш. поля. [c.702]

    Если линии ЭПР имеют сверхтонкую структуру, обусловленную взаимод. неспаренньгх электронов с магн. ядрами в радикалах, константы этого взаимод. в 2 раза меньше, чем константы аналогичного взаимод. для радикалов, не входящих в Р. п. Кроме того, каждый неспареиный электрон взаимод. с магн. ядрами обоих радикалов, составляющих Р.П., что указывает на сильный обмен неспаренными электронами в Р. п. Наиб, полную информацию получают из спектров ЭПР монокристаллов, исследование угловых зависимостей к-рых дает главные значени.ч D и позволяет оценить взаимную ориентацию радикалов в Р.п,, их расположение относительно внеш. магн. поля. [c.159]

    Еще одной характеристикой спектра ЭПР является сверхтонкая структура, происхождение которой связано с взаимодействием между магнитным моментом наспаренного электрона и спинами ядер. Это взаимодействие аналогично спин-спиновому взаимодействию в ЯМР (гл. 2, разд. 3). Константа сверхтонкого расщепления А, так же как и константа взаимодействия / в ЯМР-спектроскопии, выражается в герцах Расщепление обусловлено наличием магнитного момента у ядра, вокруг которого вращается электрон, или у расположенного поблизости ядра, а также присутствием другого неспаренного электрона. Иногда наличие или отсутствие расщепления позволяет делать важные в химическом плане заключения Так, в спектре ЭПР иона металла в комплексе расщепление под воздействием ядер лиганда будет наблюдаться только в том случае, если лиганд связан с ионом ковалентной связью [c.349]

    Комплексы ванадила в нефтях - ванадилэтиопорфирива дают спектр со сверхтонкой структурой, обусловленной взаимодействием не спаренного электрона ванадия с его магнитным ядром. Поскольку вся эта взаимодействущая система находится довольно глубоко внутри молекулы, то цри очень близком расположении ванадкловых комплексов между собой сигнал ЭПР продолжает со фанять сверхтонкую структуру, так как сами ядра ванадия продолжают почти незаторможенное вращение относительно орбитали свободного спина. [c.155]

    При исследовании комплексов в растворе был получен сложный спектр, связанный с расщеплением от ядра атома меди 21 1) = 4/си = 3/2 при этом образуются сверхтонкие структуры с шириной линии 60—80 э и суперсверхтонким расщеплением при взаимодействии неспареппого электрона с ядром атома азота (/к = 1), что для п = 2, т. е. для двух ядер азота, дает 2хпу =5 линий. Суперсверхтонкая структура [c.205]


Смотреть страницы где упоминается термин Сверхтонкая структура от ядер: [c.22]    [c.220]    [c.122]    [c.148]    [c.78]    [c.112]    [c.716]    [c.377]    [c.169]    [c.83]    [c.399]    [c.521]    [c.58]    [c.66]    [c.66]    [c.212]   
Смотреть главы в:

Магнитный резонанс и его применение в химии -> Сверхтонкая структура от ядер




ПОИСК





Смотрите так же термины и статьи:

Структура сверхтонкая



© 2025 chem21.info Реклама на сайте