Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Поглощающие наполнители

    Введение наполнителей в большинстве случаев способствует уменьшению растворимости ингредиентов в каучуках. Однако в присутствии саж с большой активностью часть растворимых ингредиентов, например серы, может поглощаться наполнителем, что соответственно увеличивает растворимость серы, отнесенную к каучуку. [c.356]

    При наличии наполнителя в лакокрасочной пленке влага должна пройти весьма извилистый путь между отдельными частицами пигмента, прежде чем она достигнет защищаемой поверхности. При этом влага большей частью поглощается наполнителем и пленкообразующей основой и удерживается ими. Правильно подобранные наполнители могут значительно улучшить качество красок. [c.182]


    Одной из серьезных трудностей при изготовлении смесей из бутилкаучука в резиносмесителе является то, что смесь часто приходится выгружать в виде крошки. Это наблюдается при высоком содержании наполнителя (например. 150 вес. ч. каолина или более) и в том случае, если бутилкау чук слабо поглощает наполнитель. Существует несколько способов для того, чтобы избежать образования крошки, которое часто возникает при работе на старых смесителях с большими зазорами между роторами и стенками. [c.160]

    Чаще всего в качестве молекул-наполнителей в структуру цеолитов входят молекулы воды. Последние могут замещаться другими молекулами-гостями подходящих размеров. Все эти молекулы удерживаются силами межмолекулярного взаимодействия, а потому соединения включения, образованные цеолитами, как и все другие соединения этого типа, относятся к молекулярным соединениям — аддуктам. Например, цеолит КаХ, имеющий, как и N aA, наибольший объем полостей, поглощает при 20° С воду, при [c.35]

    Окись магния, кроме того, предохраняет резиновую смесь от разложения во время ее переработки и эксплуатации, что основано на способности MgO поглощать хлористый водород, выделяющийся при разложении полихлоропрена. Кроме окислов металлов, в резиновую смесь вводят мягчители (стеариновая кислота, дибутилфталат), противостарители (неозон Д), органические ускорители вулканизации и наполнители. [c.197]

    Окись магния представляет собой белый рыхлый аморфный порошок с плотностью 3,2—3,7 При хранении на воздухе окись магния поглощает значительное количество влаги, взаимодействует с углекислотой с образованием углекислой соли, которая является инертным наполнителем. Окись магния применяется в [c.134]

    В различных композициях по сравнению с исходным пеком. Фракция с молекулярной массой 500 а.е.м. сорбируется наполнителем, причем в случае достаточно развитой поверхности (при Зуд = 3,36 м /г) полностью и не вымывается полярным растворителем при кипячении. Также сильно поглощаются фракции с молекулярными массами 417 и 385 а.е.м., соответствующие, по литературным данным, замещенным конденсированным ароматическим углеводородам, входящим в состав асфальтенов пеков. Фракции с молекулярными массами 128, 288 а.е.м. сорбируются поверхностью кокса не полностью или обратимо, так как обнаруживаются в экстрактах всех композиций. Для удельной поверхности 3,36 м /г наблюдается также сорбция фракций с молекулярными массами 190, 178 а.е.м., так как эти фракции по-видимому, способствуют растворению и сорбции высокомолекулярных фракций на поверхности и в порах наполнителя. [c.155]


    При поглощении воды ее молекулы располагаются между группами молекул органического вещества покрытия. В зависимости от рода этого вещества в итоге может произойти набухание, что в самом неблагоприятном случае приведет к разрыву групп молекул и тем самым к разрушению покрытия. Так, на свежей пленке льняного масла после 14 сут наблюдалось увеличение массы до 400 %, что сопровождалось разрушением покрытия [17]. Битумные массы без наполнителя, нанесенные в жидкотекучем горячем состоянии (толщина слоя 4 мм), после пребывания в течение 10 лет в воде поглощали всего около 2,5 7о воды по массе. [c.155]

    Вещества, чувствительные к углекислому газу, получают, выделяют и хранят так же, как и вещества, чувствительные к влаге. Работу с такими веществами проводят либо в токе инертного газа, пропускаемого над поверхностью реакционной смеси или через нее, либо в приборах, снабженных устройствами для поглощения углекислого газа воздуха. В последнем случае обычно используют трубки, наполненные едким кали, натронной известью или натронной известью, нанесенной на асбест. Все эти наполнители одновременно поглощают и влагу воздуха. [c.640]

    Еще более осложняется вопрос для наполненных полимеров, где газы или пары могут поглощаться частицами наполнителя, за счет адсорбции на несмоченной полимером поверхности или прилипания пузырьков газа к частице наполнителя [c.46]

    Изделия из пресспорошков отличаются высокой твердостью (особенно если в качестве наполнителя используют кварцевую муку) и имеют глянцевую поверхность. Отвержденный материал нерастворим, поглощает ничтожное количество влаги (до 0,3% после 2 ч пребывания в воде), устойчив к действию растворов кислот, но постепенно разрушается под влиянием окислителей и щелочных растворов. [c.553]

    ФенО и аминопласты с неорганическим наполнителем в среднем поглощают до 1,5 % влаги. Влагопоглощение термореактивных стеклопластиков не превышает 1 %. Даже при длительном кипячении (до 10 часов) они сорбируют до 2-4 % влаги, однако их прочность при изгибе может понизиться примерно вдвое (рис. 37). [c.111]

    В других системах поверхность наполнителя, напри.мер стеклянного волокна, может вызывать гидролиз связующего (в частности, ненасыщенных полиэфиров), что также влияет на протекание реакции и свойства отвержденной системы. Наполнитель может поглощать выделяющуюся при поликонденсации влагу, присутствие которой в граничном слое понижает степень отверждения этого слоя 117]. [c.62]

    Особый интерес представляет механизм упрочнения хрупких полимеров каучукоподобными полимерами. Для объяснения влияния каучука на свойства жесткого полимера была предложена механическая модель [557], состоящая из параллельно соединенных жесткого и упругого элементов, которые последовательно соединяются с элементом, моделирующим свойства стеклообразной матрицы. Роль каучука состоит в предотвращении катастрофического распространения образующейся трещины и в обеспечении возможности холодного течения матрицы, приводящего к образованию шейки при больших деформациях. При этом предполагается, что основная роль наполнителя сводится к созданию дополнительного свободного объема, благоприятствующего образованию шейки. Хрупкое разрушение таких полимеров, как ПММА, ПС, сополимер стирола с акрилонитрилом и др., может быть связано с тем, что поглощение энергии происходит в слоях микронной толщины у поверхности растущей трещины [558]. При упрочнении хрупких поли.меров каучуками деформация происходит уже в слоях значительно большей толщины, что приводит к увеличению способности поглощать энергию. Однако в целом энергия, поглощаемая каучуком в области волосяных трещин, намного меньше, чем в матрице, поскольку каучук характеризуется значительно более низким значением модуля, а напряжения в обеих фазах одинаковы. Поэтому можно полагать, что частицы каучука способствуют возникновению гидростатического растягивающего напряжения в полимерной матрице. Оно приводит к увеличению свободного объема, которое способствует возрастанию податливости к снижению хрупкости. Источником гидростатического давления служит относительная поперечная усадка, обусловленная различием значений коэффициента Пуассона каучука (0,5) и матрицы (около 0,3). [c.279]

    Физический и биохимический механизмы роста плесени в пластмассе до сих пор систематически пе изучались. Одпако очевидно, что динамика роста зависит как от химического строения материала, так и от физической структуры его. Грибница плесени может использовать для своего развития очень тонкие трещины и поры материала, образующиеся на стыке между самой пластмассой и частицами примесей. В этом смысле несостоятельно положение о том, что иммунитет полимера достаточен для появления иммунитета и у наполнителя. Особенно значительная склонность к плесневению обнаруживается у пластиков в соединении с текстилем. От физической структуры зависит и то, что поливинилхлорид устойчив к плесневению, а эмульсия его поражается плесенью. Если, например, примеси (низкомолекулярные соединения) могут служить питанием для плесеней (пластификаторы, стабилизаторы) и растворимы в пластической массе, то динамика роста зависит скорее от физико-химического характера материала, чем от его физической структуры. Пластификаторы содержатся также в виде очень тонкой (молекулярной) дисперсии в основной массе полимера. Благодаря миграции молекул низкомолекулярного вещества в массе полимера значительная часть этого вещества находится в соприкосновении с грибницей, а потому может поглощаться грибом. Отсюда вытекает, что чувствительность пластических масс к плесневению зависит от примесей, содержащихся в этих материалах. [c.109]


    Силиконовые эластомеры поглощают при нормальной температуре приблизительно 1% воды [268]. Абсорбция воды тем ниже, чем выше средний размер частиц наполнителя (при применении очень тонких наполнителей абсорбция воды достигает 6%). Пар при 165° и 7 ат вступает достаточно быстро во взаимодействие с силиконовым эластомером и вызывает частичный гидролиз, размягчение и разрушение поверхности. Поэтому силиконовый каучук нельзя применять в качестве уплотнений для систем с водяным паром высокого давления. [c.380]

    Молекулярный вес этилен-проппленового каучука не должен быть слишком ВЫС0КИЛ1, так как очень высокомолекулярные продукты трудно перерабатываются оптимальными являются каучуки с вязкостью по Муни от 30 до 50. Полимеры с высоким молекулярным весом можно перерабатывать, добавив к ним пластифицирующие минеральные масла. Молекулярно-весовое распределение должно быть очень узким, ибо в противном случае существенно ухудшаются динамическне свойства. Сополимеры с отрегулированным молекулярным весом и узким молекулярно-весовым распределением хорошо перерабатываются на смесителях (легко поглощают наполнители, обладают достаточной клейкостью, поддаются экструзии в калиброванные профильные детали). [c.318]

    Широкое распространение в машиностроении получили армированные стекловолокном полипропилен, полиформальдегид и поликарбонат. Армированный полипропилен, широко используемый в иасосостроении, обладает высокой водостойкостью (практически не поглощает влагу), повышенной теплостойкостью (до 100°С), хорошей ударной вязкостью, достаточной химической стойкостью и стойкостью к старению. Появившийся на мировом рынке стеклонаполненный полипропилен содержит от 20 до 40% наполнителя. [c.40]

    Свойства наполнителей. Наполнитель должнен обладать следующими основными свойствами инертностью — он не должен вступать в реакции с битумами и при смешении с ними не должен разрушаться прочностью — он не должен крошиться или растрескиваться в процессе смешения или эксплуатации не растворяться в воде не быть гигроскопичным — вследствие пшрокого применения битумов в качестве гидроизоляции необходимо, чтобы наполнитель не поглощал воду не быть прозрачным — это требуется только для наполнителей, используемых в изделиях, которые подвергаются атмосферному воздействию. Использование наполнителей, пропускающих активную часть спектра солнечного излучения, нежелательно, так как это будет способствовать ускоренному фотоокислению битумного материала. [c.196]

    Компоненты композитов не должны растворяться или иным способом поглощать друг друга. Они должны обладать хорошей адгезией и быть взаимно совместамы. Свойства КМ нельзя определить только по свойствам компонентов, без учета их взаимодействия. Каждая составляющая несет определенную функцию и вносит свой вклад в свойсгва композита. Рассмотрим требования, предъявляемые к армирующим наполнителям, например, к волокнам. [c.69]

    Мелкокристаллический MgO химически активен, является основным соединением. Он взаимодействует с водой, поглощает СОа, легкш растворяется в кислотах. Но сильно прокаленный MgO становится очень твердым, теряет химическую активность. Жженую магнезию применяют в производстве магния, в качестве наполнителя в производстве резины, для очистки нефтепродуктов, в производстве огнеупоров, строительных материалов и др. [c.572]

    Чистый фторопласт-4 (без наполнителя) не поглощает воду и кислоту сколько бы он в этих средах не находился. Известно, что фторопласт-4 не набухает ни в одном из органических растворителей. Однако с введением наполнителей во фторопласт-4 он начинает поглощать воду и кислоты. Последнее в значительной мере влияет на коэффициент трения, поэтому, возникла задача количественного определения водо- и кислотопоглотительной способности фторопластовых материалов в зависимости от вида и количества введенного наполнителя. [c.95]

    В. пористых материалов зависит как от их природы, так и от величины пор и их распределения в объеме материала. В неорг. пористых материалах, химически инертных к воде, последняя прочно удерживается капиллярными силами в Порах размером от 0,1 до 200 мкм, поэтому наличие таких пор в наиб, степени влияет на В. При насыщении водой у таких материалов практически не меняются линейные размеры, но прочность снижается. В. полимерных материалов связана с наличием гидрофильных функц. групп в макромолекуле (напр., группа ОН в поливиниловом спирте, ONH-B белках и полиамидах), а также гидрофильных низкомол. компонентов-наполнителей (древесная мука, асбест и т.п.). Так, при контакте с водой поли-е-капроамид поглощает до 10-12% воды, полигексаметиленсебацииа-мид-до 3,0-3,5%, полидодеканамид-до 1.5-1,75%, поли-д<-фениленизофталамид-до 10%, причем скорость поглощения воды у первых трех выше. Поглощение воды алиф. полиамидами сопровождается увеличением линейных размеров и относит, удлинения, уменьшением прочности. Снижение прочностных св-в у неорг. материалов обусловлено хим. взаимод. с водой отдельных компонентов, входящих в их состав (напр., СаО н MgO в керамике), или действием воды как адсорбционно-активНой среды (увеличивает возможные трещины в материале). У термопластичных полимеров снижение прочности обусловлено изменением межмол. взаимод. или надмолекулярной структуры, а также гидролизом связей в макромолекулах. В. материалов на основе термореактивных смол зависит гл. обр. от типа наполнителя и его кол-ва, характера отвердителя и степени отверждения, В. резин-в осн. от способа и степени вулканизации, кол-ва и природы наполнителя. [c.406]

    Антистатич. слой- вспомогат. слой толщиной 0,5-1 мкм представляет собой слои полимеров с добавками электролитов, электоопроводящих наполнителей (высокодисперсные сажа, фафит и др.), ПАВ и др. соед., способных поглощать из воздуха заряженные частицы, нейтрализующие заряд Ф.м., или влагу, повышающую его поверхностную проводимость. [c.163]

    Светотехвнческая пленка. Пленки, обладающие гетерогенной, оптически иеодио(юдной структурой, применяют в светотехнике. Их используют, например, для изготовления безопасных и прочных элементов щелевых световодов в комплексных осветительных устройствах, полупрозрачных светорассеивающих экранах и др. Такие пленки должны хорошо пропускать свет, но в то же время значительно его рассеивать. Пленки подобного типа получают на основе ПЭТФ с комплексным полимерным наполнителем (ПС, ПП, ПЭ, ПК и ф.). Проходя сквозь такие Пленки, свет хорошо рассеивается и мало поглощается самим материалом. - [c.83]

    Особое место среди различных добавок и наполнителей в мыловаренном производстве занимает глина. Специальные ее сорта, имеющие частицы наивысшей тонины (до 507о частиц диаметром менее одной тысячной миллиметра), так называемые жирные моющие и сукновальные глины, обладают в слабо щелочном растворе эмульгирующей способностью. Введение такой глины в состав мыла не только не понижает, но даже повышает качество его. Она действует как дезинфицирующее и смягчающее кожу средство. Кроме того, она обладает большой способностью поглощать свободную щелочь в мыле. [c.49]

    В качестве реагентов можно использовать только соединения, быстро взаимодействующие с определяемым компонентом и селективно образующие с ним ярко окрашенные продукты реакции, отличающиеся по цвету от индикаторного порошка. Избирательность часто повышают, используя вспомогательные окислительные, осушительные или фильтрующие трубки а также трубки с наполнителями для улавливания мешающих определению компонентов. В качестве примеров наполнителей можно привести шамот, обработанный сульфатом меди (взаимодействует с аммиаком и сероводородом, но пропускает фосфин) шамот с нитратом серебра и сульфатом ртуги(1) (можно определять бензин в присутствии не-предельшлх углеводородов алифатического ряда и ароматических углеводородов) стеклянный порошок с барбитуровой кислотой (взаимодействует с аммиаком, но пропускает ароматические амины) стеклянный порошок, обработанный ацетатом аммония (поглощает формальдегид, пропускает акролеин) (табл. 11.18-11.20). [c.243]

    Способность наполнителя поглощать энергию деформирования увеличивается с ростом адгезии, поэтому роль последней в механизме усиления очень велика. Чем ближе по параметрам раство-5ИМ0СТИ (т. е. энергии когезии) каучук и полимерный наполнитель 556], тем резче повышается сопротивление раздиру при увеличении содержания наполнителя, что определяется адгезией двух компонентов. Влияние наполнителя на энергию разрушения связывают также с тем, что частицы действуют как центры рассеяния энергии. Вместе с тем при использовании диспергированного полимера в качестве наполнителя повышается вязкость матрицы по аналогии с понижением температуры, что также сказывается на свойствах системы. Однако образование химической связи полимерной среды с наполнителем (например, в сополимере бутадиена со стиролом, где стирольные участки как бы играют роль наполнителя) может оказывать меньшее влияние на прочность при растяжении, чем наличие в бутадиеновом каучуке равного количества полистирола. [c.278]

    Для уменьшения воздействий ультрафиолетового излучения вводят добавки веществ, поглощающих это излучение, к ним относятся производные бензофенонов, кумарина, салициловой кислоты Стабилизирующее действие оказывает также введение в полимер пигментов и наполнителей, способных создавать своеобразный барьер для деструктирующих факторов Например, технический углерод полностью поглощает в поверхностном слое ультрафиолетовое и видимое излучение во всем диапазоне длин волн Кроме того, технический углерод способен блокировать свободные радикалы, инициирующие фотохимические реакции [c.153]

    Подбор пар растворителей. При введении в эластомерную сетку армирующего наполнителя происходит снижение ее набухания. При выводе соотношения, связывающего снижение степени набухания с содержанием наполнителя, Краус предположил, что области в эластомерной сетке, соприкасающиеся с поверхностью твердых частиц не поглощают растворителя, а степень набухания возрастает по мере увеличения расстояния от твердой частицы. В целом ненаполненный эластомер поглощает ббльшие количества растворителя, чем наполненная система. Снижение степени набухания может быть выражено как соотношение объемного содержания полимера в набухшем геле в ненаполненпом (F ) и наполненном (F,) образцах в функции концентрации наполнителя (ф)  [c.115]

    Впервые химический абсорбер в газовой хроматографии применил Р. Мартин [51] для анализа непредельных углеводородов в смеси с парафинами. Для селективного поглощения олефинов Сд—Се был использован реактор (2,0 X 0,4 см) с силикагелем, пропитанным концентрированной серной кислотой. Абсорбент приготовляли путем смешения 3 вес. ч. концентрированной серной кислоты и 2 вес. ч. силикагеля (фракция 60—200 меш). Силикагель является хорошим наполнителем для серно11 кислоты, он остается сыпучим даже при поглощении большего количества кислоты, чем его собственный вес. Использование других носителей (цемент, огнеупорный кирпич) оказалось неэффективным. Приготовленньи" абсорбент необходимо хранить в герметичных емкостях, так как при содержании воды в серной кислоте около 12 и олефины уже количественно не поглощаются. [c.74]

    С. зависит от состава и структуры полимера, определяющих его способность поглощать свет и вероятность протекания при этом химич. реакций (см. Фотодеструкция, Фотоокислителъная деструкция), от толщины облучаемого образца, количества и природы ингредиентов (напр., пластификатора, наполнителя, красителя), нримесей и растворителя, а также от условий облучения (спектральное распределение действующего излучения, интенсивность света, темп-ра, влажность и состав атмосферы). Для определения С. применяют методы, к-рыми характеризуют световое старение ири оценке атмосфера-стойкости. [c.195]

    В стекловарении стронций используют для получения специальных оптических стекол он повышает химическую и термическую устойчивость стекла и показатели преломления. Так, стекло, содержащее 9 % 5гО, обладает высоким сопротивлением истиранию и большой эластичностью, легко поддастся механической обработке (кручению, переработке в пряжу и ткани). В нашей стране разработана технология получения стронцийсодержащего стекла без бора. Такое стекло обладает высокой химической стойкостью, прочностью и электрофизическими свойствами. Установлена способность стронциевых стекол поглощать рентгеновское излучение трубок цветных телевизоров, а также улучшать радиационную стойкость. Фторид стронция используют для производства лазеров и оптической керамики. Гидроксид стронция применяют в нефтяной промышленности для производства смазочных масел с повышенным сопротивлением окислению, а в пищевой — для обработки отходов сахарного производства с целью дополнительного извлечения сахара. Соединения стронция входят также в состав эмалей, глазурей и керамики Их широко используют в химической промышленное ги в качестве наполнителей резииы, стабилизаторов пластмасс, а также для очистки каустической соды от железа и марганца, в качестве катализаторов в органическом синтезе и при крекинге нефти и т. д. [c.114]

    Водная суспензия при концентрации целлюлозных частиц порядка 12—15% (по массе) имеет структуру геля, к-рый реологически характеризуется наличием предела текучести и ведет себя подобно, напр., суспензиям бентонита или игольчатых кристалликов окиси алюминия, выращенных из основных солей. Эта суспензия способна поглощать до 50% (по объему) жидких углеводородов, напр, бензина, минеральных масел. Уд. поверхность может достигать 200000 (200 ж /г). Сухую дисперсию применяют как поглотитель масла, средство для перевода пищевых сиропов в порошкообразное состояние, наполнитель для лекарственных веществ и т. п. В спрессованном виде образуется очень прочный материал с большой сорбционной способностью. Он значительно превосходит другие материалы, применяемые для разделительной хроматографии. [c.534]


Смотреть страницы где упоминается термин Поглощающие наполнители: [c.219]    [c.236]    [c.105]    [c.197]    [c.300]    [c.99]    [c.239]    [c.181]    [c.67]    [c.236]    [c.11]    [c.296]    [c.172]    [c.306]    [c.106]    [c.367]   
Смотреть главы в:

Пиролитическая газовая хроматография -> Поглощающие наполнители




ПОИСК





Смотрите так же термины и статьи:

Наполнители



© 2024 chem21.info Реклама на сайте