Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Жирные промышленности моющих

    Исследования по переработке высокомолекулярных парафиновых углеводородов (за исключением производства жирных кислот окислением парафинов) начались лишь сравнительно недавно. Стимулом для этих работ явилось главным образом стремление организовать производство мыл, сульфонатов, алкилсульфатов и других веществ, которые играют исключительно важную, но часто недооцениваемую роль в про мышленности моющих средств, эмульгаторов, вспомогательных мате риалов для текстильной промышленности, флотационных реагентов Это стремление диктовалось желанием отказаться от использо вания жиров в области промышленного органического синтеза с тем чтобы полностью направить их на производство пищевых про дуктов. [c.8]


    Высшие жирные спирты, в молекуле которых содержится свыше 10 атомов углерода, представляют большой практический интерес для ряда отраслей народного хозяйства. На основе ВЖС вырабатываются различные поверхностно активные вещества, которые используются в качестве компонентов синтетических моющих средств, флотореагентов, вспомогательных веществ в текстильной промышленности, специальных отделочных препаратов в кожевенной, меховой, обувной и других отраслях промышленности. Высшие жирные спирты фракции Сю и выше приобрели большое значение для синтеза присадок к топливу и смазочным маслам, пластификаторов, гербицидов и некоторых других продуктов. [c.132]

    Водород находит широкое применение в металлургической и химической промышленности и смежных отраслях. Большие количества водорода расходуются в производстве аммиака, метанола и карбамида. Водород используют в различных процессах гидрирования органических веществ — при производстве синтетических волокон, жирных кислот, моющих средств, красителей, фармацевтических препаратов, в производстве бензина из угля, для гидрогенизации жиров. Водород применяют в производстве редких металлов для создания восстановительной атмосферы в печах, для резки и сварки металлов, в качестве охлаждающего агента в мощных генераторах электрического тока. [c.108]

    Исследуя кислоты, полученные при окислении парафиновых углеводородов изостроения, можно составить представление о пунктах окислительной атаки кислорода. Последний действует преимущественно на точку разветвления, иначе говоря, на третичный атом водорода, В результате отщепления боковых цепей образуются в основном кислоты с прямой цепью. Тем не менее парафины с сильно разветвленным угле- родным скелетом продолжают оставаться непонгодными для промышленных целей сырьем [42], При их окислении получают главным обраэом низкомолекулярные и более глубоко окисленные карбоновые кислоты с числом атомов углерода меньше 12, не говоря уже о значительных количествах кислот с разветвленным скелетом. Эти кислоты обладают неприятным запахом и неудовлетворительным моющим действием. Технические нефтяные дистилляты, хотя и обогащенные парафинами, непригодны для получения жирных кислот, предназначенных для мыловарения, так как содержат нафтеновые и ароматические углеводороды, а также другие циклические соединения. [c.445]


    На основе синтетических высших жирных спиртов можно изготовлять различные моющие средства в виде порошков, паст и жидких продуктов для бытовых и промышленных целей. Приготов- тенные на основе жирных спиртов синтетические моющие средства в шде порошков и паст показали высокие моющие свойства. При сравнении их моющих свойств с моющими свойствами жировых мыл определено, что синтетические моющие порошки, приготовленные из 1 т синтетических жирных спиртов, могут заменить свыше [c.16]

    Сульфокислоты и их щелочные соли (мыло) хорошо смешиваются с водой во всех отношениях. Полученный раствор при взбалтывании сильно пенится и отличается хорошей моющей способностью, а также способностью расщеплять жиры на глицерин и жирные кислоты. Поэтому контакт широко применяется в текстильной (для обезжиривания и мойки тканей и пряжи) и жировой (для расщепления жиров) отраслях промышленности, а также в металлообработке для обезжиривания деталей. Сульфокислоты и их соли являются, кроме того, хорошими деэмульгаторами они применяются для обработки и разрушения нефтяных эмульсий, а также для производства различных пластических масс, например карболита и др. [c.418]

    Применение синтетических высших жирных кислот и высших спиртов в промышленности моющих средств позволяет заменить ими в значительной степени пищевые жиры и направить пищевые жиры по их прямому назначению, т. е. для увеличения ресурсов народного питания. [c.460]

    Процесс представляет интерес для переработки пропилена и бутиленов, но еще больше для высших олефиновых углеводородов Се — С12, из которых можно получить спирты и жирные кислоты, необходимые в промышленности моющих веществ и пластификаторов. [c.457]

    К анионоактивным веществам относятся наиболее важные промышленные моющие вещества, в том числе мыло — обычное и получаемое из синтетических жирных кислот (активная часть молекулы— группа КСОО ). Большинство синтетических поверхностно-активных веществ этого типа — натриевые соли сульфокислот и [c.19]

    Твердые парафины используют как сырье для получения синтетических жирных кислот, моющих средств, хлорпарафинов и олефинов, как защитные покрытия, для пропитки тароупаковочных изделий, приготовления мастик и консистентных смазок, как изолирующий материал в электронике, а также в парфюмерной промышленности и для приготовления свеч. Церезины широко применяются в промышленности и быту в качестве защитных покрытий, различных мазей и мастик, основы канатных смазок и т. д. [c.39]

    Значительное развитие в нефтехимической промышленности получили парафины, на основе которых производятся синтетические жирные кислоты, синтетические спирты, поверхностно-активные и моющие средства. [c.30]

    Не говоря уже о том, что головные погоны жирных кислот следует из-за ИХ плохого запаха удалять из кислот, идущих в мыловаренную промышленность, их натровые соли не обладают к тому же моющим действием. [c.471]

    В условиях данного эксперимента спирты отгонялись от непрореагировавших углеводородов в виде эфиров борной кислоты. Вполне возможно, что в промышленных условиях более целесообразным окажется применение иного способа отделения спиртов от углеводородов, например, экстракция селективными растворителями или адсорбция силикагелем. При изучении возможности использования спиртов оксосинтеза для производства натрийалкилсульфатов было установлено, что полученные спирты обеспечивают устойчивую глубину сульфирования в размере 90% и выше, а их сульфоэфиры характеризуются высокой моющей способностью. Низкая стоимость бензинов контактного коксования по сравнению с другими сырьевыми ресурсами обеспечивает весьма благоприятные технико-экономические показатели данного варианта производства высших жирных спиртов. Однако до сих пор ни советскими, ни зарубежными специалистами окончательно не выяснен вопрос о сравнительном качестве натрийалкилсульфатов, полученных на основе нормальных и изомерных спиртов. [c.194]

    Полученные парафины раньше использовались для производства свеч. В настоящее время их гораздо чаще используют в бумажной, пищевой и химической промышленности. Парафинированная бумага не боится влаги, хорошо воспринимает типографскую краску и потому применяется для производства высококачественных полиграфических изделий. В парафин также замуровывают сыр. А химической переработкой парафинов получают синтетические жирные кислоты, которые незаменимы при производстве моющих средств. [c.81]

    Большое промышленное значение имеет окисление высших предельных углеводородов — парафинов с числом углеродных атомов 20— 25. Этим путем получают синтетические жирные кислоты с различной длиной цепи, которые используются для производства мыл, различных моющих средств, смазочных материалов, лаков и эмалей. [c.287]


    При окислении более высокомолекулярных (высших) алканов с числом атомов углерода в молекуле от 20 до 40 (твердые парафины) образуются жирные карбоновые кислоты с числом атомов углерода от 7 до 20. И з таких карбоновых кислот получают синтетические моющие средства. Синтетические жирные кислоты (СЖК) в промышленных масштабах получают окислением парафинов кнслородом воздуха в присутствии двуокиси марганца и перманганата калия. [c.50]

    Синтетические моющие средства на основе этих жирных спиртов в виде порошков и паст находят широкое применение в текстильной, шерстяной, меховой и других отраслях промышленности. [c.16]

    Высшие жирные спирты применяются во многих отраслях промышленности (горнорудной, текстильной, кожевенной, парфюмерной и Др.) - ВЖС служат сырьем для производства многочисленных продуктов промышленного и бытового назначения. Важнейшие из них — пластификаторы ( ie— is), пеногасители (Се— is), вещества для предотвращения испарения воды (например, из водоемов) (Сю—С20), ускорители вулканизации (См—С20), медицинские препараты ( i8—С20), добавки к текстильным препаратам ( 12—С20). смазочные масла и режущие и гидравлические жидкости, парфюмерно-косметическая продукция (Сз, С,2— )s), растворители (Се— Сю, i6— is), антикоррозионные смазки ( ie—С20), экстрагенты, продукты для получения высших жирных аминов (Сю— is). Но главным образом ВЖС применяются для производства поверхностно-активных веществ (ПАВ)—алкилсульфатов, входящих в состав синтетических моющих веществ (см. с. 341). [c.114]

    ПАРАФИН — смесь твердых высокомолекулярных предельных углеводородов, белая или желтоватая масса с т. пл. М—55° С растворяется в бензине. При обычной температуре устойчив к действию кислот, щелочей, окислителей, галогенов. Получают из нефти, озокерита, синтетически. Чистый парафин — бесцветный продукт, без запаха и вкуса, жирный на ощупь, нерастворим в воде и спирте, хорошо растворяется во многих органических растворителях и минеральных маслах. Наибольшим содержанием П. отличаются нефти западных областей Украины и грозненская. Применяют П. в бумажной, текстильной, полиграфической, кожевенной, спичечной, лакокрасочной промышленности, в электротехнике, медицине, как электроизоляционный материал, для изготовления свечей, как замедлитель нейтронов, в химической промышленности для получения высших жирных кислот и спиртов, моющих средств и др. [c.186]

    Первый в мире синтетический каучук, полученный в 1928 г. акад. С. В. Лебедевым, был назван натрийбутадиеновым, так как натрий явился катализатором процесса полимеризации бутадиена. Натрий используют как восстановитель в органическом синтезе, в частности для восстановления жирных кислот в высшие спирты, применяемые в производстве синтетических моющих средств. Высокая теплопроводность натрия и легкость его превращения в жидкость являются причинами,, объясняющими использование этого элемента в качестве теплоносителя для обеспечения равномерного обогрева аппаратов химической промышленности, в атомных реакторах, в клапанах авиационных двигателей, в машинах для литья под давлением. Из сплавов свинца, содержащего 0,58% Ыа, девают подшипнику осей- железнодорожных вагонов, а сплав свинца с 10% Ыа идет иа приготовление антидетонатора моторного топлива — тетраэтилсвинца. Иногда натрием заменяют в электротехнике медь которая в 9 раз тяжелее этого металла шины для больщих токов делают из стальных труб, заполненных натрием. Большую реакционную способность [c.297]

    О старейших известных моющих средствах, мылах, т. е. о солях жирных кислот, мы уже говорили в разд. 7.4.1.1. Однако в современном обществе их значение снизилось, потому что были открыты синтетические детергенты, которые используются в промышленности и в быту (смачивающие агенты, моющие средства, средства для мытья посуды, шампуни, компоненты зубных паст и т. д.). Эти вещества часто неправильно называют сапонатами. Мыла составляют всего лишь около 15 /о от полного объема производства детергентов и используются главным образом в виде туалетных мыл. [c.304]

    Синтетические моющие вещества, производимые на основе продуктов нефтеперерабатывающей промышленности, во многих отношениях превосходят мыла из жирных кислот и в настоящее время во многих странах в значительной степени вытеснили последние. Они обладают большим сочетанием полезных свойств, чем твердые мыла из натуральных жиров и растительных масел, вследствие чего широко распространены в различных отраслях промышленности и в быту. [c.394]

    Промышленный процесс карбамидной депарафинизации, в основе которого лежит образование комплексов карбамида, обеспечивает, с одной стороны, улучшение качества моторных топлив и минеральных масел, а с другой стороны, позволяет во много раз увеличить производство мягкого (жидкого) парафпна — сырья для производства синтетических жирных кислот, синтетических жирных спиртов, моющих средств и т. д., а также сырьевой основы промышленности микробиологического синтез а — производства белково-витаминных концентратов на базе нефтяных углеводородов. Поэтому разработка теории карбамидной депарафинизации, а также создание и совершенствование соответствующих промышленных установок имеют большое значение [1, 2]. [c.6]

    Дальнейшее развитие представлений о взаимосвязи состава и свойств твердых углеводородов, найденных Н. И. Черножуковым и продолженных его последователями, дало возможность расширить область применения твердых углеводородов нефти, распространив ее на ряд отраслей народного хозяйства. Это физические антиозонанты в шинной промышленности, восковые композиции в радиоэлектронной, пищевой промышленности и других отраслях. Следует отметить, что результаты исследования твердых углеводородов имели большое значение при выборе фракций парафина для получения методом окисления синтетических жирных кислот, моющих средств и других ПАВ. Рациональное использование твердых углеводородов, являющихся побочными продуктами производства нефтяных масел, явилось решением крупной химмотологиче-ской задачи и одновременно решением экологических вопросов, связанных с созданием малоотходных технологий. [c.10]

    К анионоактивным веществам относятся наиболее важные промышленные моющие вещества, в том числе мыло — обычное и получаемое из синтетических жирных кислот (активная часть молекулы— группа КСОО ). Большинство синтетических поверхностно-активных веществ этого типа — натриевые соли сульфокислот и кислых эфиров серной кислоты, а именно алкиларилсульфонаты с алкильной группой Сю—С15, алкилсульфонаты, имеющие в углеродной цепи 12—18 атомов углерода, и алкилсульфаты с алкильной группой примерно той же длины  [c.19]

    При изготовлении водных смазочно-охлаждающих жидкостей используют неионогенные смачиватели (оксиэтилированные алкил-фенолы), выпускаемые по ГОСТ 8433-57, ОП-7 и ОП-10, и бутилнаф-талинсульфонат НБ —некаль (ГОСТ 6867-54). Для этой цели с успехом могут быть использованы выпускаемые промышленностью моющие вещества — сульфонолы, стиральный порошок Новость , в состав которого входят натриевые соли сульфированных жирных спиртов в количестве 38—42%. [c.98]

    Это промышленный процесс, применяемый при производстве низкозастывающих топлив, маловязких масел и жидких парафинов. Последние используются как сырье при производстве синтетических жирных кислот и спиртов, а-олефинов, моющих средств, поверхностно-активных веществ и др. Карбамидная депарафини — аация отличается от депарафинизации избирательными раствори — елями возможностью проведения процесса при положительных ем пературах. [c.270]

    Присутствие в натрийалкилсульфатах углеводородов отрицательно сказывается на качественной характеристике синтетических моющих средств. Однако следует учитывать, что при сушке моющих композиций основная масса углеводородов удаляется вместе с летучими компонентами. Поэтому в товарном продукте содержание углеводородов обычно не превышает 2—3% в расчете на алкилсульфаты. Опыт химической промышленности ГДР убедительно показывает, что наличие такого количества углеводородов практически не влияет на качество получаемых моющих средств. Таким образом, в случае производства натрийалкилсульфатов на базе спиртов, получаемых в процессе гидрирования жирных кислот, отпадает необходимость в стадии экстракции непросульфировавшихся соединений. [c.187]

    Большое практическое значение приобрело гидрирование синтетических жирных кислот, получаемых окислением парафина. Оин также имеют прямую цепь углеродных атомов и дают при гидрировании спирты нормального строения. При этом пз фракции кислот Сю— ia получается смссь первичных спиртов, которая, подобно лауриловому и гексадециловому спиртам, пригодна для производства высококачественных поверхностно-активн1)1Х веществ типа алкилсульфатов, а также пеионогенных моющих веществ на основе оксида этилена. При гидрировании фракции кпслот С —Сд образуется смесь спиртов, с успехом применяемая для синтеза пласти-фшсаторов, вспомогательных веществ для текстильной промышленности, флотореагентов. [c.506]

    Установлено две марки этих жирных кислот СЖКС-Т для производства тугоплавких смазок и СЖКС-С для производства среднеплавких смазок. Однако для производства консистентных смазок еще широко применяются СЖК по ГОСТ 8622—57 (табл. 12. 21). Это те фракции, которые не используются в мыловаренной промышленности и в производстве синтетических моющих средств. Они не являются полноценным сырьем для производства консистентных смазок. [c.685]

    Азотпроизводные жирных кислот — нитрилы и амины находят применение в различных отраслях промышленности. Так, например, нитрилы жирных кислот используются в качестве антиизносных присадок к минеральным маслам, пластификаторов, исходного сырья для синтеза новых моющих средств и т. п. Высшие первичные амины применяются в качестве ингибиторов коррозии, флоторе- [c.298]

    Сахароза играет огромную роль, являясь важным продуктом питания. Некоторые производные сахарозы, например ее простые и сложные эфиры, нашли промышленное применение. Так, в качестве прослойки при изготовлении стекла триплекс может применяться октаацетат сахарозы, а для уменьшения вязкости различных полимерных материалов при изготовлении лаков, клеев и т д. используется ее бензоат. Сложные эфиры сахарозы и высших жирных кислот, обладая высокой моющей способностью, могут использоваться в качестве детергентов (см. с. 345). Некоторые простые эфиры сахарозы, например октаметилсахароза, применяются в качестве пластификаторов при производстве пластмасс. [c.246]

    Сравнительно меньшим, по быстро растущим потребителем нефтехимических продуктов является промышленность синтетических моющих средств. В этой области широко применяют алкилирование бензола тетрамером нронилена алкилат сульфируют для получения додецилбепзолсульфоновой кислоты, успешно конкурирующей с сульфонатами таких материалов, как жирные спирты кокосового масла. Растет также значение продуктов конденсации окиси этилена с различными производными нефтяного п природного сырья. Даже серная кислота, применяемая для производства поверхностно-активных веществ (нанример, сульфонатов), может быть продуктом нефтехимического происхождения, так как часто ее получают из элементарной серы, выделяемой при переработке сернистых нефтей. Значению нефтехимических продуктов в промышленности синтетических моющих средств посвящен обширный обзор [25]. [c.24]

    Н и 3 к о м о л е к у л я р и ы е кислоты. Полное отделение кислот состава С4—С,, от средних по молекулярному весу необходимо вследствие неприятного запаха этих кислот. Приблизительный состав этой фракции таков С4—2%, С., — 5%, Сб - 20%, С, - 23%, Са - 23%, С , - 19%, > С,, - 5%. Кислотное чпсло—435, гидроксильное число—6, йодное число—8. Из этих кислот превращением их в так называемые эфирокис-лоты может быть получена одна из разновидностей моющих средств. Эфирокпслоты получают хлорированием низкомолекулярных жирных кпслот и последующей конденсацией а-хлор-замещенных кпслот с первичными и вторичными спиртами. Щелочные соли этих эфирокислот отличаются высокой капиллярной активностью в смеси с обычными мылами онп используются в качестве моющих средств в текстильной промышленности. Высокая растворяющая и диспергирующая способность солей эфирокислот делает их особенно желательным материалом в производстве фармацевтических и косметических препаратов. Свободные эфирокпслоты применяют в кожевенной промышленности, а их сложные эфиры используются как растворители или пластификаторы. [c.503]

    По данным [16] можно получить представление о современном потреблении СЖК. Мыловаренная промышленность использует в качестве жирозаменителей СЖК Сю—С16 и Сп—С20. В ГДР 30 % вырабатываемых СЖК потребляется мыловаренной промышленностью. Основное количество (43%) восстанавливают в первичные жирные спирты, являющиеся сырьем для приготовления более эффективных моющих средств, чем мыло. Первичные жирные спирты получают восстановлением метиловда или бутиловых эфиров жирных кислот (фракция Сю—С20) на таблетированном медноцинковом катализаторе при 230—270 °С и давлении 15—20 МПа. [c.324]

    Одно из наиболее перспективных направлений применения процесса карбамидной депарафинизации — получение товарных нефтяных парафинов различных сортов, дальнейшее использование и переработка которых могут осуществляться по нескольким направлениям. В начале промышленного внедрения процесса карбамидной депарафинизации выделяемый мягкий парафин использовали в качестве сырья для термического крекинга. Несколько более квалифицированным можно считать использование его в качестве компонентов топлив для реактивных двигателей — когда после компаундирования выдерживаются требования по температурам застывания, помутнения и т. д. Наиболее правильно использовать мягкие парафины в нефтехимических производствах. Например, мягкие парафины после соответствующей очистки можно окислять до жирных кислот или жирных спиртов, крекировать или дегидрировать с получением непредельных соединений, сульфохлорировать с получением моющих веществ типа алкилсульфонатов, хлорировать с получением присадок к смазочным маслам, пластификаторов, средств пожаротушения и т. д. На основе мягких парафинов можно производить различные растворители без запаха, применяемые при приготовлении некоторых лаков, красок и защитных покрытий, а также в фармацевтической и парфюмерной промышленности. Можно также использовать мягкие парафины при производстве инсектицидов, не имеющих запаха, для сельского хозяйства и особенно для бытовых нужд, при изготовлении некоторых типографских красок горячей сушки и т. д. Однако шире всего парафины будут применяться при производстве синтетических жирных кислот и синтетических жирных спиртов, а также при производстве белково-витаминных концентратов. Целесообразность производства парафина различных сортов (в том числе мягкого) на базе существующих нефтеперерабатывающих заводов с последующей переработкой этих парафинов освещается в ряде работ [204, 205 и др.]. [c.131]

    Для гидрирования сложных эфиров в спирты применяют высокотемпературные оксидные катализаторы - хромит меди и, реже, хромит цинка (катализаторы Адкинса) (см. 1.3). В промышленности этим способом из жиров и жирных кислот получают высшие спирты, перерабатываемые далее в моющие средства - алкилсуль-фаты КОЗОзЫа, и глицерин. Благоприятное положение равновесия процесса гидрирования - дегидрирования (см. 1.2, 1.5) при температурах, обеспечивающих на хромите меди необходимую скорость восстановления эфиров (200-250 °С), достигается при давлении водорода 200-400 атм. Однако скорость гидрирования зависит от количества катализатора, и, увеличивая его сверх обычного (до 1,0-1,5 от массы эфира), можно понижать температуру реакции на 100 °С и даже более без существенного изменения длительности восстановления. Это, в свою очередь, позволяет в зависимости от конкретных условий либо уменьшать давление водорода, сохраняя высокую степень превращения эфиров в спирты (положение равновесия), либо повышать его, чтобы дополнительно ускорить процесс. Оптимальная продолжительность гидрирования эфиров составляет 1-8 ч. [c.72]

    Реакция конденсации жирных спиртов с длинной цепью с окисью этилена (на молекулу спирта приходится 10—40 молекул окиси) положена в основу производства моющих средств для текстильной и других отраслей промышленности. При этом процессе окись этилена пропускают в спирт при 165° в присутствии основных катализаторов. В промышленном масштабе изготовляют продукты конденсации октадецилового спирта с 20 молекулами окиси этилена и касторового масла с 40 молекулами окиси. Варьируя длину углеводородной цепи спирта и число конденсирующихся молекул окиси, можно получить вещества с любой степенью растворимости в воде. Эти соединения обладают моющими свойствами такого же характера, как и натриевые соли жирных кислот (стеарат натрия С тНздСООЫа) или сульфаты жирных спиртов (С18Нз7030зЫа). Как и в случае солей жирных кислот или сульфатов высших спиртов, молекулы продуктов конденсации окиси этилена с высшими спиртами содержат группу, растворимую в воде, и группу, растворимую в маслах. Особенность продуктов конденсации заключается в том, что растворимость в воде обусловлена не карбоксильной или сульфогруппой, а органическим радикалом, совершенно не обладающим ионной структурой. Вследствие этого на поверхностноактивные свойства продуктов конденсации окиси этилена с высшими спиртами совершенно не оказывает влияния [c.361]

    ТРИЭТАНОЛАМИН (HO H2 HJ)зN — бесцветная жидкость со слабым аммиачным запахом т. кип. ЗбО С. Т. гигроскопичен, хорошо растворяется в воде, спирте, ацетоне, с кислотами образует соли. Получают взаимодействием водного раствора аммиака с оксидом этилена, Т. применяют как абсорбент газов кислотного характера (СО2, НаЗ) при очистке промышленных газов, как ингибитор коррозии. Соли Т. и жирных кислот (называются истинными органическими мылами) широко применяются как моющие средства, эмульгаторы и смачивающие вещества. [c.253]

    Сульфаты высших жирных спиртов являются одним из лучших пипов синтетических моющих средств и получили широкое применение в промышленности и в быту. Исходные жирные спирты получают из кашалотового жира, кокосового или таллового масла. Синтетические способы основываются на непосредственном окислении парафиновых углеводородов, на восстановлении жирных кислот, полученных окислением парафина, на методе оксосинтеза (см. стр. 151) или же на получении из низших олефи-новых углеводородов с помощью алюминийорганических катализаторов. Последний способ имеет то преимущество, что позволяет получать спирты с нормальной цепью, что особенно ценно для эффективности моющего действия. [c.236]

    Вследствие недостатка жиров для производства мыла и жирных спиртов, пригодных для производства синтетических моющих средств, наибольший промышленный интерес представляло для Германии в годы войны гидрокарбо-нилирование олефинового сырья, выкипающего в пределах 180—320° (олефины Си — j,). При этом наиболее целесообразно исходить из олефинов нормального строения с двойной связью при концевом атоме углерода [67 ]. Такие олефины получали крекингом газойлей или крекингом мягкого парафинового гача Фишера-Тропша. Таким образом, оксопроцесс весьма теспо связан с нефтяной промышленностью. Хотя в Германии оксоспирты вырабатывали в полупромышленном масштабе две фирмы ( Рурхеми и И. Г. Фарбениндустри ) еще в начале 40-х годов, промышленное производство изооктилового спирта в США было начато [4] лишь в 1948 г. (фирма Эссо стандарт ойл в Батон-Руже). В качестве сырья в этом случае использовалась олефиновая фракция С,. [c.261]


Смотреть страницы где упоминается термин Жирные промышленности моющих: [c.12]    [c.12]    [c.195]    [c.249]    [c.207]    [c.103]    [c.244]    [c.8]    [c.175]   
Синтетические жирные кислоты (1965) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Моющие

Некоторые примеры промышленного производства жирных спиртов и их сульфатов, применяемых в качестве моющих веществ



© 2025 chem21.info Реклама на сайте