Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Циклогексаи производные

    Выше упоминалось, что в процессе каталитического риформинга, кроме дегидрирования производных циклогексана, происходит конверсия пятичленных нафтенов. Простейшим случаем этой реакции является превращение метилциклопентана в бензол  [c.172]

    Производные циклогексана циклогексан. ... [c.44]

    Содержание ароматических соединений в бензине каталитического крекинга можно объяснить либо дегидрированием производных циклогексана, либо более просто отщеплением алкильных групп от молекул замещенных ароматических углеводородов, содержащихся в сырье. Малая дегидрирующая активность алюмо силикатов и тот факт, что толуол не обнаруживается в продуктах каталитического крекинга гептана при весьма жестких условиях, заставляют еще более сомневаться в возможности образования ароматических соединений при каталитическом крекинге в больших количествах благодаря дегидроциклизации. Представляется вполне вероятным, что ароматические соединения образуются из низших олефинов, которые всегда содержатся в реакционной массе при расщеплении цепей парафиновых углеводородов. Это подтверждается, например, идентификацией простых одноядерных ароматических углеводородов в продуктах, полученных из пропилена, и-бутенов, пентенов и гексенов. [c.333]


    А. Свойства синтетических углеводородов в качестве основных данных. В настоящее время имеется сравнительно немного данных по тяжелым индивидуальным углеводородам. Хорошо известны свойства /i-алканов, некоторых разветвленных алканов и однозамещенных /i-алкильных производных циклопентана, циклогексана, бензола и нафталина. Хотя Американским нефтяным институтом по Проекту 42 (директор Р. В. Шисслер) изучено большое число углеводородов высокого молекулярного веса, но ясно, что до сих пер удалось изучить лишь небольшую часть тех углеводородов, присутствие которых B03M0JKH0. Это и неудивительно, так как синтез таких высокомолекулярных углеводородов, как циклические молекулы с различными заместителями или смешанные нафтено-ароматические соедине- [c.368]

    Обычно первичными реакциями пиролиза является дегидрирование и разрыв углеродной связи. Степень того или другого зависит от сырья и от условий пиролиза, но поскольку это представляет практический интерес, обнаружены методы, позволяющие увеличивать размер дегидрирования, а в некоторых случаях превращать его в почти единственную реакцию. Дегидрирование снабжает сырьем производство пластиков и синтетического ь аучука. Наиболее важными процессами дегидрирования являются процессы получения этилена, пропилена, бутадиена из газообразных парафинов, стирола из этилбензолов и ароматических углеводородов из циклогексана и его производных. [c.98]

    Даже в условиях гидрирования над алюмомедным катализатором при 325° С наблюдались значительные отложения углерода. В этих условиях индан разлагается на 60% е образованием 57 молярных процентов толуола, 33 молярных процентов н-пропилбензола, 3-молярных процентов бензола и, кроме того, углерода и производных циклогексана. Адкинс и Дэвис [1] нашли, что тетралин и аналогичные гидроароматические углеводороды дегидрировались при нагревании над никелевыми катализаторами и в присутствии бензола в качестве акцептора водорода. Соединения серы также эффективно способствовали переносу водорода. [c.112]

    Кроме того, что циклопропан, циклобутан и их производные могут превращаться в изомерные алифатические олефины и что некоторое количество метилциклопентана наблюдалось при термическом крекировании циклогексана [478, 479], термическая изомеризация нафтенов — явление далеко не типичное. [c.122]

    Олефины и бутадиены производные циклогексана  [c.301]

    Это старый способ определения нах )тенов в бензине, но он не точен, потому что, во-первых, неизвестно расширение при смешивании метановых и нафтеновых углеводородов, а во-вторых, удельные веса производных циклопентана и циклогексана лежат на двух сопряженных кривых, сходящихся в области выше 170°. Вследствие этого всякая средняя кривая необходимо будет произвольна и неточна. Точность метода вряд ли выше 5—10%. [c.149]


    Химические методы могут быть использованы или для разделения некоторых классов углеводородов, или для идентификации индивидуальных углеводородов в узких фракциях. Ароматршеские углеводороды могут быть количественно отделены от насыщенных углеводородов сульфированием олефины могут быть количественно и селективно гидрированы при низких температурах в присутствии эффективных катализаторов циклогексаны (исключая четвертичные производные) дегидрируются в ароматические углеводороды над платиновым катализатором и т. д. [c.13]

    Моноциклические нафтены представлены в нефтях в основном производными циклопентана и циклогексана. Производные низ-ших циклов в нефтях не найдены в небольших количествах в некоторых нефтях найдены производные высп1их циклопарафинов. Кроме моноциклических нафтенов нефти содержат бициклические и трициклические циклопарафиновые углеводороды. Обычпо. содержание нафтенов в различных нефтях составляют 30—50%. Одпако в некоторых нефтях (слабопарафинистые и беспарафппист(> е) может быть до 80% нафтенов. [c.7]

    Цикланы представлены в основном гомологами циклогексана и декалина, количество которых в результате глубокого гидрирования максимально в ГФ ( 83%) и минимально в ТС-1 (— 20%), В топливах Т-1 и Т-5 количество циклановых углеводородов йрибли-зительно одинаково и составляет около 60%. Основная часть нафтенов (90—94%) состоит из алкилпроизводных циклогексана. Производные декалина содержатся в количествах 2—6%. [c.11]

    С получаются также производные нроппл-циклогексана, производные этил- и пропилбензо.ла, а также гидрированные полимеры. При более низко1т темп-ре в присутствии скелетного никеля образуются фенолы. [c.35]

    И.ч рассмотрения модели молекулы камфоры видно, что введение в скелет циклогексана, производным которого является камфо- [c.139]

    Современные способы получения бензола, толуола и ксилолов из нефти основаны на том, что подходящая но составу нрямогонная бензиновая фракция, богатая нафтеновыми углеводородами и уже содержащая некоторое количество ароматических, нодвергается каталитическому дегидрированию, нри котором циклогексаны дегидрируются в ароматические углеводороды, а алкнлциклонентаны изомеризуются в цикло-гоксаиы, которые тотчас же дегидрируются в производные бензола. Как моясно видеть из табл. 8, бензин из нефти нафтенового основания содержит до 55% нафтеновых углеводородов, которые в процессе риформинга превращаются в ароматические. [c.102]

    Производных циклогексана содержится значительно меньше. Разница молекулярного веса и температур кипения отдельных кислот определяется различной длиной боковых цепей циклонентанового кольца. Молекулярный вес может быть от 110 до 1000. [c.275]

    Одним из первых успехов только что нарождавшейся стереохимии Циклических соединений явилось создание теории напряжения Байера, успешно и красиво объяснившей неустойчивость циклопропана и циклобутана и высокую стабильность соединений ряда цикло-пентана. Байер обратил внимание на то, что в трехчленных и четырехчленных кольцах по очевидным геометрическим причинам валентные углы углерода (109°28 ) должны уменьшиться до 60 и 90°, соответственно, создавая в результате значительное напряжение молекул. Наоборот, в пятичленном кольце циклопентана по той же причине углы почти точно соответствуют валентному углу. Однако дальнейшее развитие теории встретилось с неожиданными трудностями. Плоские, по представлениям Байера, кольца циклогексана, циклогептана и т. д. должны были бы характеризоваться растущим с увеличением кольца напряжением, но оказалось, что они весьма устойчивы. Особенно устойчивыми оказались циклогексан и его производные, а также синтезированные Ружичкой соединения с числом атомов С в цикле от 15 до нескольких десятков. По теории напряжения существование таких соединений вообще считалось невозможным. Правда, в дальнейшем Заксе и Мор показали, что циклогексан может быть свободен от байеровското напряжения, если его атомы углерода расположены не в плоскости, а в пространстве. Они предложили две такие пространственные модели, получившие названия кресла XI и ванны, или лодки, XII. Казалось бы, эти формы совершенно равноценны и должны отвечать двум изомерным цик-логексанам, которые, возможно, трудно или совсем неразделимы. Однако в дальнейшем различными физическими методами (с помощью спектров комбинационного рассеяния [571, ИК-спектроскопин [c.37]

    Рядом исследователей показано, что конфигурационная изомеризация является достаточно общей реакцией взаимные переходы циклических стереоизомеров под действием катализаторов наблюдались также в случае функциональных производных циклогексана, например для 1,4-диметоксициклогексанов [52], и некоторых дизамещенных гетероциклов. Установлено [52], что конфигурационная изомеризация стереоизомерных 1,4-диметоксициклогексанов на Pt/ протекает лишь в присутствии водорода. [c.81]

    Если циклопентан и его производные предварительно не изо-меризовать в Св-кольцевую структуру, то при дегидрировании они не образуют ароматических углеводородов [256, 257]. В то время как термодинамические условия при температурах свыше 300° С благоприятны для образования ароматических углеводородов [258], при термической переработке циклогексана ароматики также не образуется. При температуре 550° С получаются очень незначительные количества бензола [259], а при 620° С выход ароматики составляет только 0,4 мольных процента, несмотря на то, что разложению крекингом подвергается до 24% циклогексана [260]. Отчасти алкильные производные циклогек- [c.101]


    Наличие большого количества циклопарафинов в нефтях долгое время являлось загадочным. Циклопарафины, идентифицированные в низко-кипящих фракциях, представляют собой циклопентаны и циклогексаны. Вещества, содержащие эти кольца, встречаются в природе настолько редко, что мало вероятно образование циклопарафинов в нефти при каком бы то ни было разрушении или расщеплении таких редких в природе нафтеновых производных [131. Большое количество циклопарафинов в нефтях вызвало у Траска [55, 56] сомнение в том, что жирные кислоты могут быть первичным исходным веществом. Стадников [48] указал, что циклопарафины не могут находиться в жидкой углеводородной смеси, полученной при термическом разложении жирных кислот. [c.90]

    Во всех случаях наибольший эффект оказывает введение первой двойной связи в кольцо (от 6,8 до 8,9 мл/моль). Введение третьей двойной связи связано примерно с таким же изменением молярного объема (6,4 мл/молъ), как и в табл. 9 при введении в -гексан врутренней двойней связи с образованием траис-конфигурации (6,5 мл/моль). Сопряжение и резонанс связей не оказывает никакого заметного влияния на молярный объем при переходе от циклогексана к бензолу или при соответствующем переходе алкильных производных. [c.244]

    Производные циклогексана широко распространены в природе, особенно в нофти, но лишь некоторые члены этой серии углеводородов имеются в продаже как индивидуальные продукты высокой степени чистоты, а именно циклогексан, метилциклогексан, этилциклогексан. [c.462]

    Реакция Дильса-Альдера. Универсальным и уникальным методом, широко применяемым для синтезов разнообразных производных циклогексенов с хорошими выходами, является реакция Дильса-Альдера. Следует различать два основных метода. Во-первых, получаются производные циклогексена (или гексадиена) (такие, как альдегид, кислота, эфир, кетон и др.) с последующим превращением их в углеводород по обычным реакциям. Во-вторых, осуществляется прямой синтез циклогек-сена (или гексадиена). Существует много превосходных обзоров [5, б, 8, 24, 81] по реакции Дильса-Альдера. Нортон делит синтезы на три основных типа [104]  [c.466]

    В инертных растворителях реакция идет при температуре ниже 0°, при этом образуются циклоалкилиитраты с выходом бО—65%, нитро-производные с выходом 10—15% и карбоновые кислоты с выходом 10— 15%. При болоо высокой температуре в кипящем четыреххлористом углероде циклогексан дает 39% нитроциклогексана и 41% циклогексил-нитрата [57]. [c.80]

    Простейшие олефины так же действуют, как диенофилы, по требуют сравнительно более высоких температур. Например этилен и бутадиен при 200° дают циклогексен с выходом 18% [31]. С другими диенами были получены лучшие выходы, например с 2,3-диметилбутадиеном (50%) и циклопентадиеном (74%) [31]. При более высокой температуре такие реакции обратимы и пиролиз циклогексена является одним иа хороших лабораторных методов получения бутадиена. Винилацетат, хлористый винил, другие хлорзамещенные этилены и различные аллильные производные такн е вступают в реакцию конденсации с реакционноспособными диенами при 100—200°, однако известно, что все эти реакции должны проводиться при сравнительно высоких давлениях [27]. Стирол и другие фенилзамещенные этилены, по-видимому, в некоторых случаях вступают в реакцию, и, как будет показано ниже, молекулы диенов могут конденсироваться одна с другой, например, при димеризации бутадиена в ви-нилциклогексен [35]. Эта специфическая реакция весьма услон няет работу с бутадиеном. Конденсации такого рода в качестве побочной реакции возможны при любой из реакций Дильса-Альдера  [c.177]

    Неосажденные углеводороды встряхиваются и промываются серной кислотой. Количество циклогексана и циклопентана легко может быть определено по анилиновой точке. Содержание среди осажденных углеводородов алкилзамеш,енных производных циклогексана и циклопентана легко вычисляется по разнице. Не исключена возможность и дальнейшего разделения, так как алкилзамещенные цикло-гексаны и циклопентаны реагируют легче, нежели разветвленные алифатические углеводороды. Неосаждаемые на холоду углеводороды начинают медленно осаждаться при однодневном стоянии и быстро при подогревании до 00—70°. [c.112]

    Разработан реактор для гндрогенизацйи угольной пыли в псевдоожиженном слое. Проведены опыты гидрогенизации японских углей на установке производительностью 50 кг/сутки Проведены опыты гидрокрекинга лигнина в растворах фенола, циклогексана и тетралина. Гидрогенизаты обогащаются ароматическими углеводородами из кислых компонентов выделены о- и п-крезолы и другие орто- и пара-производные фенола Изучено влияние условий на процесс получения горючих газов и кокса из битуминозного угля. Рекомендуемые условия 900 °С и время контакта 1 мин [c.21]

    Расчеты молекулярных характеристик в методе МОХ. В методе МОХ устанавливают корреляции (соответствия) между характеристиками МО и свойствами молекул. Аналогично тому как это сделано для бензола, рассчитывают порядок связи и по корреляционному графику (см. рис. 48) определяют ее длину. Метод МОХ используется и для расчета энергии делокализации. Для бензола Ео = 2р (см. с. 117). Сравнив энергию реакции гидрирования бензола gHe (—209 кДж/моль) и трех молекул циклогексена gHio (—120 кДж/моль), находим Ео =2 =—151 кДж/моль. Полученная величина является не истинным, а эффективным значением р. Эту величину можно использовать, в свою очередь, для расчета энергии делокализации в производных бензола (табл. 11). Установлены корреляции между энергиями орбиталей по методу МОХ и спектрами. (Здесь эффективный параметр р имеет уже другое значение.) Они предсказывают в соответствии с опытом смещение полос в сторону низких частот для ряда бензолтрифенилен-> коронен. [c.119]

    Описываемые в патентной литературе смазочные композиции обычно содержат несколько антиокислительных присадок. Так, для замедления окислительных процессов в эфирные масла вводят синергетическую смесь, состоящую из октилфенил-2-нафтиламнна и М-фенил-Ы -циклогексил-л-фенилендиамина [англ. пат. 1357744] или из Ы-фенилнафтиламина или дифениламина, производного фе отиазина и беизотриазола [пат. США 3218256]. [c.181]


Смотреть страницы где упоминается термин Циклогексаи производные : [c.73]    [c.410]    [c.659]    [c.410]    [c.659]    [c.101]    [c.86]    [c.346]    [c.146]    [c.302]    [c.314]    [c.358]    [c.130]    [c.201]    [c.289]    [c.339]    [c.254]    [c.508]   
Общая органическая химия Т.1 (1981) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Боран производные циклогексил

Циклогекса

Циклогексая

Циклогексил



© 2025 chem21.info Реклама на сайте