Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Мера каталитического действия кислот и оснований

    МЕРА КАТАЛИТИЧЕСКОГО ДЕЙСТВИЯ КИСЛОТ И ОСНОВАНИЙ [c.18]

    В разбавленных растворах кислот и оснований количественной мерой каталитического действия может служить значение pH- В концентрированных растворах используют функции кислотности, определенные индикаторным методом [2]. Известно несколько функций кислотности, определяемых с помощью разных классов индикаторов. Для растворов оснований определены функции щелочности [3]. [c.323]


    Кислотно-основной катализ в растворах. В водных растворах каталитические реакции очень часто происходят по механизму кислотно-основного взаимодействия, что послужило не только для выяснения механизма каталитического действия кислот и оснований, но и в значительной мере к установлению самих понятий кислоты и основания, введенных Н. И. Бренстедом (гл. VI). [c.289]

    Кислоты и основания известны, по крайней мере, со времен алхимии. Их свойства также хорошо известны кислоты способны растворять многие металлы и их оксиды, менять цвет органических красителей (индикаторов), обладают каталитической активностью по отношению к ряду реакций в растворах, растворы кислот имеют кислый вкус. В свою очередь, основания способны нейтрализовать действие кислот, их растворы на ощупь мыльные. [c.185]

    Для того чтобы оправдать расширение понятия о кислоте, пользовались тем фактом, что кислоты Льюиса обладают многими свойствами кислот, соответствующих старому определению, например они изменяют цвет индикаторов, нейтрализуются основаниями и обладают иногда очень сильным каталитическим действием. Некоторые нз реакций, катализируемых кислотами Льюиса, катализируются в равной мере и обычными кислотами, в других же реакциях кислоты Льюиса обладают специфическим действием. [c.224]

    В рассмотренном выше случае восстановления дианионов малеи-новоЁ кислоты в небуферном растворе увеличение его ионной силы приводит главным образом к повышению приэлектродной концентрации электрохимически неактивной формы деполяризатора — дианионов малеиновой кислоты, а также ионов гидроксила. Увеличение концентрации последних в известной мере снижает эффект ускорения приэлектродного процесса в целом. При работе же в буферных растворах повышение их ионной силы (при сохранении постоянным их pH) обусловливает некоторое выравнивание pH между приэлектродной областью и объемом раствора, приводящее к увеличению pH вблизи отрицательно заряженной поверхности электрода [9, 85], что, в свою очередь, приводит к снижению скорости протонизации. В любой буферной системе кислота — основание (ОН и В) заряд кислотной формы ВН всегда на единицу выше, чем у основной В, поэтому вследствие действия электростатических сил концентрация заряженной ВН в прикатодном пространстве намного выше, а заряженной В — намного ниже, чем в объеме раствора а так как одна из форм ВН или В всегда заряжена, то кислотность приэлектродной области значительно выше, чем в глубине раствора. С ростом же ионной силы (при сохранении pH раствора в объеме постоянным) из-за снижения абсолютной величины фх-нотен-циала различие между величинами pH в приэлектродной области и в объеме раствора, как уже отмечалось, становится меньше вследствие повышения pH приэлектродного слоя. Количественный расчет влияния двойного слоя при изменении ионной силы буферного раствора на скорость электродного процесса, ограниченного предшествующей объемной реакцией протонизации, был выполнен [86] для случая предельного каталитического тока водорода, вызываемого пиридином. [c.30]


    Кислоты и основания ускоряют мутаротацию если любой из ано-меров растворить в бензоле н добавить смесь фенола и пиридина, то мутаротация происходит очень быстро. Изучение кинетики реакции показывает, что скорость процесса зависит от концентраций фенола, пиридина, а также тетраметилглюкозы это позволяет сделать вывод, что фенол и пиридин действуют совместно как кислотный и основной катализаторы. Далее установлено, что если функциональные группы фенола (кислотную) и пиридина (основную) ввести в одну молекулу, как это имеет место в случае а-пи-ридона (а-оксипиридина), то образуется значительно более эффективный катализатор, хотя каталитические группы в а-пиридоне являются существенно менее сильными, чем в феноле и пиридине, по своим кислотным и основным свойствам. Полагают, что катализ мутаротации а-пиридоном протекает следующим образом  [c.293]

    Подобным же образом детальное изучение влияния концентрации кислоты (вернее, концентрации воды) в случае опытов с фосфорной и серной кислотами и инактивирующего действия азотистых оснований на такие кислоты, окисные катализаторы и катализаторы Фриделя-Крафтса лишний раз подтверждает, что они должны быть сильными кислотами. Известно, что серная и фосфорная кислоты имеют наивысшую активность при концентрациях 98 и 107% с резким возрастанием ее по мере приближения к указанным величинам. Гамметт [62], а также Облэд, Хиндин и Миллс [136] на многочисленных примерах показали, что небольшие количества воды могут весьма заметно снижать активность сильных кислот. Подобным же образом небольшие количества азотистых соединений могут инактивировать используемые при полимеризации кислотные катализаторы. Несмотря на присутствие большого количества кислотных молекул, в одинаковой мере обладающих каталитической активностью, в каждый данный момент активны только некоторые из них. Это существенно для твердых кислотных катализаторов. Если взаимодействуют соседние участки, то деактивация небольшими количествами ядов не является доказательством, что только небольшое количество участков способно проявлять каталитическую активность. Активность твердой поверхности может быть сходна с каталитической активностью жидкой кислоты. Наряду с этим для твердых кислотных катализаторов в некоторых случаях возможно действительное существование неоднородных кислотных участков. [c.350]

    Особый метод цолучения эфиров, в которых спиртовый и кислотный компоненты состоят из одинакового числа атомов и имеют аналогичное строение, основан на реакции полимеризации альдегидов в определенном нанравлении, выражаемой схемой 2R -СНО ->R-G00-GHaR. Оложные эфиры названного типа (спермацет, пальмитиновый эфир пальмитиновой кислоты) нередко встречаются в природе. Тищенко [503] давно сдслал наблюдение, что под каталитическим действием этилата алюминия или магния альдегиды часто образуют сложные эфиры с хорошими выходами. На реакцию Тищенко в течение долгого времени не обращали внимания, по крайней мере в лабораторной практике. Но недавно Чайльд и Адкинс [504] подробно исследовали наилучшие условия проведения реакции. Практическое значение этого метода для лабораторной химии, повидимому, не очень велико, но в отдельных случаях, когда, как, нанример, в случае фурфурола, альдегид несравненно более доступен, чем спирт и кислота, он имеет ряд преимуществ. Во всяком случае, этот метод требует очень чистых исходных материалов и никак не может быть признан удобным в выполнении. В части детального описания метода отсылаем к оригиналу. [c.205]

    Фаянс нашел, что в присутствии оптически-активного основания—никотина,—действие которого было каталитическим , (+)-камфоркарбоновая кислота декарбоксилируется несколько быстрее, чем ее оптический изомер. При действии хинидина разни ца в скоростях декарбоксилирования достигает 46%. Хинин с той же эффективностью вызывает преимущественное разложение (—)-камфоркарбоновой кислоты. Аналогичные данные получены и при декарбоксилировании (+)- и (—)-бромкамфоркарбоновых кислот, причем (+)-кислота в присутствии хинидина разлагается быстрее рацемата, а последний, в свою очередь, быстрее (—)-изо-мера. Под воздействием хинина наблюдалась обратная зависи [c.114]

    Кинетический ток. Кроме только что рассмотренных каталитических реакций, которые характеризуются образованием максимумов, найдено большое количество реакций,, в которых зависимость предельного тока от периода капания имеет иной характер, чем это можно было ожидать на основании уравнения Ильковича. В целом это свидетельствует о том, что количество вещества, реагирующего на электроде, определяется не только одной диффузией, но также и каким-то другим процессом, происходящим с заметной скоростью на поверхности электрода. Этот добавочный ток заметно повышает диффузионный ток и может для удобства быть назван кинетическим. Он очень легко может быть определен путем изменения периода капания данного капельного ртутного электрода и определения отклонений теоретически вычисленной по уравнению Ильковича величины диффузионного тока от экспериментально найденной. Существование таких токов было обнаружено еще давно, при изучении смесей некоторых восстанавливающихся кислот и их анионов (стр. 535) и других подвижных равпове-сий, например при кетоэнольной таутомерии (см. стр. 532). В каждом отдельном случае миграция вещества от поверхности электрода нарушала равновесие, которое восстанавливается с измеримой скоростью. Каталитическое действие коллоидной платины и газообразного водорода на окислитель, образующийся при электролизе на капельном ртутном электроде (см. стр. 5СЗ), и ферментативное действие углекислого буфера (см. стр. 520) могут являться в какой-то мере различными примерами, поскольку катализ иным способом ускоряет восстановление равновесия. [c.491]


    Кислотпость катализаторов крекинга или веществ, обладающих значительной активностью в крекинге углеводородов (различных адсорбентов, получаемых из алюмосиликатных или из магниевосиликатных глин, из силикагеля, пропитанного окисью алюминия и пр.), может быть определена, по крайней мере качественно, при помощи индикаторов. Последними исследованиями [35, 37, 38] окончательно установлено, что поверхность синтетических алюмосиликатных крекинг-катализаторов и активированных глин обладает центрами высокой кислотности. Существенно, что упомянутые авторы проводили измерение кислотности в безводной среде, благодаря чему отпало всякое сомнение в правильности интерпретации кислотности как свойства, присущего поверхности твердого тела. Милликен, Миллс и Облед [39] подвергли критике утверждение о том, что кислотность можно измерить при помощи титрования растворами оснований [18, 40]. Их возражение состоит в том, что свойство, измеряемое при титровании, является не кислотностью, а способностью реагировать с основанием в условиях опыта. Подобным образом из.меренная кислотность мало или совсем не имеет отношения к количеству кислоты, действующей в каталитических реакциях. Подобную критику надо считать обоснованной только в тех случаях, когда при.мененный растворитель, налример вода, может содействовать образованию кислоты путем сольволиза ангидрида или вещества с другой структурой, способного превращаться в кислоту при взаимодействии с растворителем. Безусловно, работа Уоллинга, применявшего полностью неполярный растворитель (изооктан), с этой точки зрения не может быть подвергнута критике. Нет также оснований предполагать, что применение растворителя, подобного бензолу (Темеле, Вейль-Малерб), приведет к тому, что вещество окажется способным реагировать с основанием. Даже если бы слегка основные свойства бензола могли бы уменьшить способность твердого тела реагировать с другим основанием, то это не будет и.меть значения при таких сильных основаниях, как н-бутил-амин. [c.20]

    Каталитические реакции металлических ионов могут быть подразделены на два главных класса реакции, в которых халатное соединение металла непрерывно изменяется в результате протекающего превращения, и реакции, в которых халатное соединение остается неизмененным. Первый класс включает и окислительно-восстановительные реакции, в которых ион металла меняет валентность, и реакции, в которых изменение состояния окисления не происходит. Примерами окислительно-восстановительных реакций, катализируемых металлами, являются окисление оксалата вследствие образования хелата с Мп (III) и окисление аскорбиновой кислоты при помощи иона Си (II). При.мерами реакций, в которых хелатное соединение изменяется, не вовлекая ион металла в окислительно-восстановительную стадию, являются. катализ декарбоксилнрования Р-кетокислот различными металлическими ионами, реакции переаминирования шиффовых оснований, производных пнро-доксаля, и гидролитическое расщепление различных шиффовых оснований через стадию образования хелата. Реакции второго типа, которые протекают без непрерывного изменения в структуре или составе металл-хелатного соединения, могут рассматриваться как примеры истинного металл-хелатного катализа. Пептидное действие ферментов, активированных металлами, является одним из большого числа явлений этого типа, который предполагается свойственным биологическим системам. Действие Си(П)-хелатов различных диаминов приводится как пример металл-хелатного катализа в гидролизе диизопропилфторфосфата (ДФФ). В настоящей работе в общих чертах описывается вероятная природа этих каталитических реакций и факторы, которые делают металл-хелатное соединение эффективным катализатором. [c.364]

    В некоторых случаях, если вышеописанные методы непригодны, для получения аминов, содержащих па один атом углерода меньше, чем исходный амид, можно использовать окисление и декарбоксилирование амидов кислот гипохлоритами и гипобромитами (реакция Гофмана [28—31]) количество амида должно быть не менее 2—3 г. При работе с количествами 1 г и меньше выходы аминов значительно уменьшаются и составляют не более 50% от выходов, указанных в литературе для макросинтезов. Получение аминов действием азотистоводородной кислоты на органические кислоты [32—36] по сравнению с предыдущим методом значительно выгоднее, поскольку этот синтез одностадиен и выходы выше. Однако использование этого метода несколько ограниченно вследствие токсичности азотистоводородной кислоты впрочем, при соблюдении соответствующих мер предосторожности работа с азидами и азотистоводородной кислотой не более опасна, чем с диазометаном. Метод применим для работы с количествами веществ 500 мг и более. Аналогично получение аминов путем восстановления альдегидов и кетонов в присутствии аммиака или аминосоединений [37] пригодно для количеств 1—5 г. Очень легко приспособить для полумикроколичеств ряд синтезов, основанных на восстановлении при помощи формиата аммония и муравьиной кислоты. Каталитическое восстановление карбонильных соединений в присутствии аммиака требует специальной аппаратуры, предназначенной для проведения реакции гидрирования под давлением. [c.276]


Смотреть страницы где упоминается термин Мера каталитического действия кислот и оснований: [c.201]    [c.203]    [c.51]    [c.38]    [c.114]    [c.19]    [c.77]    [c.639]   
Смотреть главы в:

Химическая стойкость полимеров в агрессивных средах -> Мера каталитического действия кислот и оснований




ПОИСК





Смотрите так же термины и статьи:

Каталитическое действие кислоты

Кислоты действие

Основания и кислоты



© 2024 chem21.info Реклама на сайте