Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Альдегиды в реакции полимеризации

    Реакции полимеризации. Они характерны только для альдегидов. Кетоны в реакции полимеризации не вступают. [c.335]

    Альдегиды и кетоны восстанавливаются соответственно в первичные и вторичные спирты. В реакциях окисления из альдегидов образуются карбоновые кислоты с тем же числом углеродных атомов. Альдегиды также вступают в реакции полимеризации и поликонденсации. [c.339]


    Реакции полимеризации. Эти реакции характерны только для альдегидов изучаемого ряда. Кетоны не полимеризуются.  [c.149]

    Реакции полимеризации и конденса-ц и и. Эти реакции характерны для альдегидов и обусловлены реакционной способностью карбонильной группы. Процессы полимеризации рассмотрены ниже при изучении свойств формальдегида и ацетальдегида. [c.383]

    Напишите реакцию полимеризации пропионового альдегида (образование тримера). Укажите условия реакции. [c.78]

    В качестве примера обычного типа полимеризации альдегида приведем полимеризацию ацетальдегида. При внесении капли серной кислоты происходит экзотермическая реакция со вскипанием ацетальдегида, и он тримеризуется в шестичленное гетероциклическое соединение — паральдегид. Если проводить полимеризацию ниже 0° С, то происходит тетрамеризация и образуется твердый метальдегид, применяемый как твердое горючее твердый спирт  [c.149]

    По цепному механизму протекают такие важные химические реакции как горение, взрывы, процессы окисления углеводоро. ов (получение спиртов, альдегидов, кетонов, органических кислот) и реакции полимеризации. Поэтому теория цепных реакции служит научной основой ряда важных отраслей техники и химической технологии. [c.183]

    Укажите условия реакции полимеризации аль-де1 идов. Приведите схемы реакций полимерных превращений муравьиного альдегида. Что собой представляет сухой спирт  [c.63]

    Исследование реакций полимеризации под давлением позволило обнаружить обратимость процессов такого типа. Было изучено при комнатной температуре действие давления порядка 1,2 ГПа на масляный и изомасля-ный альдегиды. Оказалось, что в этих условиях образуются твердые полимеры, имеющие аморфное строение. [c.198]

    Даны вещества Л, Б, В. Вещество А — углеводород, при термическом разложении которого образуется вещество Б. Последнее при гидратации образует уксусный альдегид, а при гидрогенизации — вещество В. Вещество В вступает в реакцию полимеризации, образуя ценный полимер. Назовите эти вещества. Напишите уравнения реакций. [c.92]

    Реакция фенолов с другими альдегидами, например ацетальдегидом, масляным и бензойным альдегидами, в кислой среде приводит к образованию лишь линейных продуктов конденсации. Избыток альдегида не вызывает образования резитов. Исключением является фурфурол, который образует с фенолом резиты вследствие вторичной реакции полимеризации по двойным связям. [c.10]


    Переваримость белков может понижаться также из-за образования сетчатой поверхности за счет реакций с радика. ами или через посредство альдегидов. Эти реакции полимеризации, по существу, делают белки нерастворимыми и создают стерические помехи действию протеаз. [c.317]

    Реакции полимеризации и конденсации. Эти реакции составляют особую группу, так как в них участвуют две одинаковые или разные по природе молекулы. В качестве первой выступают альдегид или кетон. Вторая молекула обязательно содержит активный водород, который перемещается к атому кислорода С=0-связи в ходе ее раскрытия. Второй молекулой может быть любой альдегид или кетон. [c.460]

    Однако, прямую гидратацию цитронеллаля провести не удается вследствие того, что в кислой среде этот альдегид претерпевает ряд превращений, характерных для терпеновых соединений с открытой цепью. При этом образуются различные полимерные и циклические соединения. Даже в разбавленных кислых растворах скорость реакций полимеризации и циклизации значительно больше скорости присоединения воды по двойной связи. Поэтому гидратацию осуществляют, обрабатывая кислотой не сам цитронеллаль, а его бисульфитное соединение. [c.269]

    Ионы металлов с валентным состоянием выше единицы, например ионы железа, кобальта, никеля, меди и марганца, являются активными катализаторами автоокисления [27]. Уже давно известно влияние этих ионов на окисление сульфитов натрия, между тем исследования их влияния на окисление альдегидов и ненасыщенных соединений проведены позднее и им способствовали параллельные исследования редоксных катализаторов в реакциях полимеризации. Катализаторы добавлялись к этим органическим реагентам в виде солей органических кислот типа ацетатов, стеаратов и нафтенатов. Так, ацетат кобальта в уксусной кислоте катализирует окисление бензальдегида и олефинов [31], а стеараты кобальта, железа, меди и марганца — реакцию окисления жидких алканов [8, 9]. [c.457]

    Окислением алкилароматических углеводородов получают альдегиды, кетоны, кислоты и другие кислородсодержащие соединения. Первичными продуктами при этом будут гидропероксиды. Наибольшее значение в промышленности органического синтеза имеет гидропероксид изопропилбензола, который служит полупродуктом в производстве фенола и ацетона. Его используют в качестве инициатора радикальных реакций полимеризации  [c.123]

    Как и следует ожидать для цепных реакций со свободными радикалами в качестве цепных центров, реакции автоокисления без облучения реагентов и в отсутствие катализаторов, способных инициировать цепи за счет образования свободных радикалов, являются медленными реакциями. Активными катализаторами окисления жидких альдегидов или олефинов являются перекиси, гидроперекиси, растворимые соли, содержащие ионы тяжелых металлов, и другие катализаторы, активные в реакции полимеризации. Скорости реакций автоокисления в отсутствие катализаторов часто обнаруживают индукционные периоды, продолжительность которых достигает нескольких часов, с последующим крайне резким возрастанием скорости. Это, вероятно, обусловлено тем, что гидроперекиси, образующиеся в качестве первичных продуктов, разлагаются, давая свободные радикалы и увеличивая таким образом скорость инициирования реакционных цепей. [c.453]

    Образование небольших количеств более высококипящих продуктов объясняется, вероятно, протекающими в какой-то степени реакциями полимеризации, например реакцией (101). Кроме того, выделяется окись углерода и образуется в эквимолярном количестве алкан, получающийся из алкильного радикала альдегида. Образование этих продуктов можно объяснить реакциями [c.298]

    При этом среди жидких продуктов реакции авторами были констатированы уксусный альдегид, ацетон, изопропиловый спирт, метил-этпл-карбипол, метил-этйл-кетон и смесь разнообразных углеводородов, кипевших в весьма широких пределах и образовавшихся за счет полимеризации этйлепа. Для того чтобы понять образование ацетона, изонропилового спирта и других продуктов, необходимо допустить, что альдегид подвергается полимеризации с образованием следующих продуктов. г [c.260]

    Реакции полимеризации с одновременным изменением взаимного сочетания атомов в элементарном звене макромолекул по сравнению сЬ структурой исходного мономера происходят в результате предварительного отщепления каких-либо атомов (большей частью водорода) от одних молекул и присоединения их к другим молекулам. Примером может служить образование полимеров при нагревании ацетальлегида или кротонового альдегида  [c.88]

    Из уксусного альдегида, таким образом, получается кротоновый альдегид (стр. 151), от названия которого конденсация молекул карбонильных соединений, протекающая с выделением воды и образованием непредельных карбонильных соединений, получила название кротоновой конденсации. Конденсация этого типа уже не может быть отнесена к реакциям полимеризации, так как новое, более сложное вещество образуется с выделением воды, и его молекулярная масса не является суммой молекулярных масс исходных молекул. [c.147]


    Несомненно, что органическая перекись, в случае ее образования даже и в незначительных количествах, должна проявлять разветвляющее действие в реакции окисления углеводородов. Это следует из целого ряда хорошо известных фактов инициирующего действия органических перекисей в реакциях полимеризации [34], термического распада [35], да и самого углеводородного окисления [36]. Такая функция органических перекисей получает свое естественное объяснение в относительно легкой способности этих веществ распадаться по связи 0—0 с образованием свободных радикалов. В таком случае тот твердо установленный факт, что нри газофазном окислении углеводородов (при температурах от 250— 300° и до температур, отвечающих нулевому значению температурного коэффициента скорости) разветвляющим агентом является высший альдегид, а не органическая перекись (см. стр. 253), может привести к заключению, что в ходе этой реакции практически полностью отсутствует возможность образования таких перекисей. Подобное заключение получает подтверждение в данных Нокса и Норриша [37] (см. стр. 262— 263), настаивающих на том, что единственная найденная ими при окисле НИИ пропана органическая перекись представляет собой диоксиметил-перекись, которая образуется ые в зоне реакции, а уже после отбора смеси в растворе при взаимодействии формальдегида с перекисью водорода. Такое утверждение о полном отсутствии органических нерекисей в реакционной зоне вступает, однако, в противоречие со сложившимся за последние 20 лет представлением о наличии в ходе газофазного окисления углеводородов конкуренции двух возможных реакций перекисного радикала КОа  [c.332]

    Реакции полимеризации. Эти реакции характерны только для альдегидов. Под влиянием минеральных кислот альдегиды способны полимернзоваться с образованием циклических продуктов  [c.133]

    Альдегиды легко вступают в реакции полимеризации и поликондснеации. При полимеризации могут образовываться линейные и циклические молекулы. Напри мер, при растворении формальдегида в воде образуется линейный параформальдегид.  [c.349]

    Однако ароматические альдегиды не способны к реакциям полимеризации, с ЫНз они не образуют альдегидаммиаков, а вступают с ним в реакцию конденсации с образованием гидробензамидов  [c.466]

    Кетоны в обычных условиях не окисляются. В более жестких условиях (при повышенной температуре, в присутствии катализаторов) они окисляются только сильными окислителями (хромовая смесь и т. п.). При этом происходит разрыв углерод-углеродной связи, соединяющий углеводородный радикал с карбонильной группой, и образование двух кислот. Кетоны не вступают в реакцию полимеризации, а для альдегидов она характерна например, формальдегид полимери-зуется уже при обычной температуре в присутствии катализаторов (H2SO4. НС1)  [c.263]

    Многие реакции термического разложения углеводородов, простых эфиров, альдегидов и кетонов протекают, по-видимому, по свободнорадикальному цепному механизму. В 1935 г. Райс и Герцфельд показали, как можно представить цепной механизм этих реакций, который приводил бы к простому суммарному кинетическому уравнению. В реакциях участвуют свободные радикалы, в том числе радикалы СН , С2Н5 и Н. Участие радикалов в ряде таких реакций было доказано с помощью металлических зеркал, посредством катализирования реакции полимеризации олефина, о которой известно, что она протекает по цепному механизму, и путем ингибирования реакций с помощью таких веществ, как окись азота или пропилен. Если каждая молекула ингибитора обрывает цепь, а каждая цепь приводит к образованию большого числа молекул продукта реакции, то очевидно, что даже следы ингибиторов должны оказывать заметное влияние на реакцию. Например, окисление сульфит-иона в растворе кислородом воздуха заметно подавляется добавлением следов спирта. [c.310]

    Указанные особенности строения лигандов и комплексов во многом определяют как химические свойства, так и методы получения этих веществ Обычно применяемая для синтеза многих азотсодержащих макроциклов конденсация карбонильных соединений с первичными аминами или их солями (с последующим восстановлением азометиновых связей) в данном случае применяется не часто, поскольку макроциклические основания Шиффа, образованные алифатическими альдегидами и алифатическими аминами, малоустойчивы Лишь по методу Барефилда предполагается промежуточное образование макроциклического основания Шиффа, которое затем восстанавливают без выделения полупродукта Низкая устойчивость алифатических азометинов — это в первую очередь следствие большой склонности таких соединений к реакциям полимеризации, проходящим по механизму альдольной конденсации Сказывается также устранение общего стабилизирующего влияния алкильных заместителей (см. с 67) [c.37]

    Степень чистоты продажного мономерного ствола обычно выше 99%. Около 1% загрязнений обычно состоит из небольших количеств этилбензола, хлоридов, воды, серы, альдегидов и ингибитор а. Присутствие этих веществ незначительно влияет на течение реакций полимеризации с участием стирола. Поэтому очистку продажного стирола не следует предпринимать, если мономер не был загрязнен примесями, образующимися при действии воздуха, воды, каучука, пробки, металлических поверхностей или при поброжном обращении. Все эти иримеси могут влиять на длину цепи полимера и его свойства. [c.155]

    Таким образом, окислению подвергается соседний с двойной связью аллильный атом углерода. Однако это вовсе не исключает возможности протекания реакции полимеризации олефинов иод действием молекулярного кислорода. Так что при автоокислении непредельных углеводородов помимо продуктов окисления (спиртов, альдегидов, кислот и т. д.) в оксидате всегда присутствуют значительные количества полимерных и смолоподобных веществ. Повышение иепредельности соединения резко снижает его окислительную стабильность. Появление в молекуле сопряженных двойных связей изменяет механизм реакции окисления. Взато-действие сопряженных диеновых углеводородов с молекулярным Кислородом протекает по типу реакций диенового синтеза (реакции Дильса-Альдера). Наиример, при окислении циклогексадиеиа Кислородом в течение 100 час. при 25° из продуктов окисления путем [c.69]

    Было найдено, что в реакциях с участием непредельных альдегидов лучше применять последние в форме ацеталя [67], диацетата или дипропио-ната [65]. В этих случаях побочные реакции полимеризации сводятся к минимуму. [c.18]

    Из перечисленных реакций наибольший практический интерес представляет четвертая реакция. Окиси олефинов—весьма реакционноспособные соединения, они легко взаимодействуют с га-лоидоводородами, спиртами, органическими кислотами и их хлорангидридами, под действием катализаторов изомеризуются в альдегиды и кетоны, а также могут вступать в реакции полимеризации, приводящие к образованию соединений с большим молекулярным весом. [c.242]

    Реакциям в пленках посвящено очень много работ, мы рассмотрели только немногие из них. Другими примерами таких реакций являются реакции полимеризации, например полимеризация альдегида стеариновой кислоты [154], фотохимические процессы и различные биологические реакции. К фотохимическим реакциям, в частности, относятся разложение монослоев стеариланилида светом длиной волны 240 нм [155], фотохимическое превращение пленок эргостерола в витамин D [156], различные фотохимические реакции монослоев белков [159], фоторазложение и тушение флуоресценции в моиослоях хлорофилла [144, 158]. В очень интересной работе Виттена [159] описано частичное уменьшение площади смешанных пленок трипальмитина и цис-тио-индигового красителя вследствие изомеризации последнего в транс-форму под действием ультрафиолетового излучения. Субмонослойные пленки ненасыщенных жирных кислот и их сложных эфиров на силикагеле подвергаются самоокислению со скоростью более низкой, чем скорость аналогичной реакции в гомогенном растворе (самоокисление сопровождается хемилюминесценцией) [159а]. [c.136]

    Почти все реакции разложения можно ускорить, если имеется катализатор, способный при разложении или реакции с субстратом служить источником свободных радикалов. Так, например, алкил-перекиси или кислород могут катализировать многие из таких реакций разложения. Галоиды катализируют разложение большинства галоидалкилов, простых эфиров и альдегидов, поскольку они легко диссоциируют. Весьма активными инициаторами реакций полимеризации являются также металлалкилы и азосоединения, фотолиз введенных кетонов и альдегидов тоже может инициировать другие реакции разложения. Однако разложение некоторых галоидалкилов, например я-пропилхлорида, не ускоряется катализаторами, дающими свободные радикалы, и поэтому считается, что они разлагаются только по молекулярному механизму, давая непосредственно олефины и хлористый водород. В общем изучение каталитического разложения не внесло значительного вклада в выяснение механизма разложения. Существование катализа свободными радикалами указывает на возможность протекания реакции по цепному механизму, но не говорит в пользу того, что она будет идти как цепная в отсутствие катализатора. [c.380]


Смотреть страницы где упоминается термин Альдегиды в реакции полимеризации: [c.206]    [c.379]    [c.460]    [c.475]    [c.381]    [c.353]    [c.12]    [c.203]    [c.209]    [c.191]    [c.381]    [c.381]   
Химия и технология синтетических высокомолекулярных соединений Том 9 (1967) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Полимеризация альдегидов

Реакции полимеризации



© 2025 chem21.info Реклама на сайте