Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Каталитические реакции в водных растворах

    Скелетный никелевый катализатор также вызывает каталитическое разложение водных растворов гидразина [179]. При увеличении количества никелевого катализатора объем выделяющегося газа приближается к объему, соответствующему реакции [c.142]

    Большой интерес представляет выяснение каталитической роли водных растворов триоксида хрома в реакции окислительного хлорирования. Установлено, что между раствором катализатора и кислородом происходит взаимодействие, имеющее место в основном в присутствии соляной кислоты, при этом сам хлорид водорода практически не реагирует [122]. Полагают, что это взаимодействие приводит к образованию пероксидных соединений. [c.52]


    Сложные эфиры гидролизуются при нагревании в присутствии каталитического количества водного раствора кислоты. Эта реакция обратима во многих простейших случаях константы равновесия приближаются к единице. Если взять большой избыток воды, гидролиз можно провести по существу количественно. С другой стороны, если медленно отгонять воду, то эту реакцию можно использовать для превращения кислоты и спирта в сложный эфир этерификация по Фишеру)  [c.307]

    Ранее мы сообщали [1] об изучении каталитической очистки водных растворов, содержащих диазосоединения, с использованием в качестве катализатора сульфокислот металлфталоцианинов. В настоящей статье показаны результаты изучения каталитической активности ди- и тетрасульфокислот фталоцианина кобальта в реакции окисления водных растворов п-фенилендиамина. [c.72]

    Влияние степени декатионирования и деалюминирования морденита на каталитическую активность в реакции изомеризации парафиновых углеводородов. Декатионированные формы морденитов можно получить прямым обменом на протон или через аммонийную форму. Прямой обмен ионов натрия на протоны происходит в процессе обработки морденита сильной неорганической кислотой одновременно удаляются ионы алюминия. Второй путь получения декатионированной формы - обработка водными растворами аммонийных солей. [c.61]

    Смешанные катализаторы состоят из компонентов, каждый из которых обладает каталитической активностью к данной реакции. Они могут существенно отличаться по каталитической активности от компонентов в чистом состоянии. Например, реакция разложения гипохлорита натрия на хлорид и хлорат натрия в водном растворе катализируется одной из гидроокисей никеля, меди и железа. При этом скорость реакции равна (в условных единицах) 700, 100 и 100 соответственно. При применении смешанного катализатора, содержащего 70% гидроокиси никеля и по 15% гидроокисей меди и железа, скорость реакции повышается до 1200 условных единиц. [c.429]

    Наиболее детально изучены каталитические реакции такого типа, протекающие в водных растворах. В этом случае наряду с каталитическим действием внесенных в раствор основания или кислоты необходимо учесть также каталитическое действие соответственно ОН или НзО" , а также самой воды. Поэтому кинетическое уравнение для процесса, лимитирующей стадией которого является взаимодействие молекулы субстрата (8 или 5Н) с частицей катализатора, в случае основного катализа имеет вид  [c.253]


    Хорошо известно, что органические соединения, особенно неполярные, могут абсорбироваться на поверхности или внутри мицелл. Это приводит к увеличению их растворимости в водных растворах и часто к изменению химической активности. В то же время именно мицеллы, а не индивидуальные молекулы ответственны за изменение скорости органических реакций в водных растворах, содержащих ПАБ. Следовательно, удачный выбор поверхностно-активного вещества может способствовать увеличению скорости в 5—1000 раз по сравнению со скоростью реакции, протекающей в его отсутствие. В зависимости от типа мицелл создается повышенная концентрация ионов Н+ или 0Н в слое Штерна, что и обусловливает увеличение скорости реакции. Другие основные или нуклеофильные группы в мицелле также должны оказывать каталитическое действие. Гораздо более слабые взаимодействия между мицеллой и противоионами существуют в более широком слое Гуи — Чепмена, ширина которого (от поверхности мицеллы) составляет несколько сотен ангстрем в этом слое содержание ионов меняется плавно( плавный градиент ионов). [c.284]

    Со(1И)-триеновые системы удобны тем, что обмен и замещение воды в координационной сфере иона металла — всегда очень медленный процесс от минут до часов), т. е. кинетические параметры можно легко оценить. Медленный обмен лигандов в водном растворе позволяет использовать изотопную метку для прослеживания реакционного пути координированной молекулы воды или гидроксогруппы и, таким образом, дает возможность различить прямой нуклеофильный и общий основной механизмы гидролиза. Однако помимо указанных преимуществ у этих систем имеются и очевидные недостатки, если рассматривать соответствие их (или отсутствие такового) ферментативным процессам. Например, Со(1П)-триеновые комплексы, инициирующие реакции, находятся в сте-хиометрическом, а не каталитическом соотношении с продуктом гидролиза или гидратации, который остается прочно связанным с находящимся в комплексе металлом. По этой причине комплексы Со(П1) не столь пригодны, как могли бы быть, для моделирования ферментов. Тем не менее из-за благоприятного понижения (ДЯ" практически не меняется) при комплексообразовании с подходящими лигандами наблюдалось увеличение скорости в 10 раз. Несмотря ни на что, обсуждаемая здесь система все же неплохая модель, что обусловлено способностью металлов поляризовать прилегающие молекулы субстрата и активировать координированные нуклеофильные группы. [c.356]

    Уникальные каталитические свойства ферментов (см. гл. I) обусловлены весьма сложным механизмом их действия, многие стороны которого еще до конца не раскрыты. Всеобщее признание, однако, получило представление, согласно которому ферментативный катализ обусловлен по крайней мере тремя основными причинами во-первых, тем, что сорбция субстрата на ферменте протекает так, чтобы облегчить последующую химическую реакцию во-вторых, полифункциональ-ным характером химического взаимодействия между ферментом и сорбированным субстратом (или субстратами) и, наконец, в-третьих, эффектами микросреды, характеристики которой (диэлектрическая проницаемость, полярность и др.) в области активного центра могут существенно отличаться от соответствующих показателей водного раствора. В настоящей главе будут рассмотрены именно эти три физикохимических механизма ускорений в реакциях, катализируемых ферментами. Наиболее подробно остановимся на первом из них ( 1—4), поскольку именно здесь удалось глубоко и количественно проникнуть в природу движущих сил катализа. [c.34]

    В таблице 4 приведены результаты кинетического изучения гидролиза -нитрофенилацетата, катализируемого имидазолом [7]. Найти константу скорости второго порядка реакции гидролиза, если каталитически активной формой является нейтральная молекула имидазола, и рКа имидазола в водном растворе равно 7,23. [c.24]

    Различные каталитические реакции подразделяются на реакции гомогенного и гетерогенного катализа. В тех случаях, когда катализатор и реагирующие вещества образуют однородную систему (т. е. находятся в одной фазе), мы имеем дело с гомогенным катализом. В качестве примеров можно указать на каталитическое окисление СО до СО2 в присутствии паров воды и окисление ЗОг до 50з в присутствии оксида азота N02. К этому типу каталитических реакций относится и реакция гидролиза растворимых углеводов в водном растворе в присутствии кислоты. Как видим, в первых двух случаях катализатор и катализируемые вещества находятся в газообразном состоянии, в третьем — образуют однородный раствор. [c.160]

    В присутствии катионов и анионов, некоторых органических веществ, а также ряда твердых веществ разложение перекиси водорода значительно ускоряется. Следовательно, эта реакция в водных растворах может быть гомогенной или гетерогенной каталитической реакцией в зависимости от взятого катализатора. [c.365]

    Еще в конце XIX в. было установлено влияние добавок кислот и оснований на скорость реакций в водных растворах. Это привело к заключению, что ионы водорода н гидроксила отличаются каталитическими свойствами. Дальнейшие исследования показали, что каталитическая активность кислот и оснований сохраняется и в неводных растворах, где электролитическая диссоциация весьма слаба. [c.408]


    Олефины можно также гидратировать каталитически в водных растворах серной или азотной кислоты низкой концентрации, тогда промежуточного образования соответствующих эфиров не происходит. Эта реакция была подвергнута кинетическому исследованию для выяснения ее механизма. Один из предложенных механизмов заключается в том, что присоединяющийся протон должен отщепиться от иона гидроксония прежде, чем он сможет принять участие в определяющей скорость реакции стадии образования карбониевого иона (Инголд, 1954). В другом возможном механизме реакции (Тафт, 1952) первая стадия представляет собой быстрое и обратимое образование я-комплекса, который затем медленно изомеризуется в карбониевый ион. Последний быстро реагирует с водой с образованием спирта и регенерацией иона гидроксония. Этот механизм был подтвержден при изучении гидратации триметилэтилена и метилэтилэтилена оба олефина превращаются в трег-амиловый спирт  [c.200]

    Каталитическое окисление. — Водный раствор, содержащий 0,019 М метапериодата натрия NaI04 и 0,0034 М перманганата калия, при рн 7—8 и 25 °С быстро расщепляет олефиновую двойную связь (Лемье, 1955). Перманганат восстанавливается только до манганата, из которого он регенерируется перйодатом. Метаперио-дат натрия сам по себе не реагирует с олефином. Симметрично диза-мещенный олефин (реакция 1) или тризамещенный олефин (реакция 2) превращаются вначале в а-кетол, который иногда удается выделить. Дальнейшее окисление приводит к образованию кислот или кетонов. Из олефина с концевой двойной связью (реакция 3) в качестве одного из продуктов образуется формальдегид  [c.226]

    Вид функциональной зависимости (1) определен экспериментальным путем. В опытах использованы реакция каталитического окисления водного раствора сульфита натрия кислородом воздуха и хемосорбция озоновоздушной смеси в природной воде. Опыты проведены при постоянной температуре. [c.165]

    Д. Химический состав катализ. Известно, что некоторые вещества, присутствующие в системе в небольших количествах, могут оказывать значительное влияние на скорость реакции. В тех случаях, когда подобные вещества не расходуются, это явление называется катализом. Если вещество увеличивает скорость реакции, оно называется промотором (положительный катализ). Если же вещество уменьшает скорость реакции, оно называется ингибитором или замедлителем. Так, например, было найдено, что скорость разложения иона СЮ в водном растворе 2С10 2СГ -)- О2 очень сильно возрастает при небольших концентрациях водородных ионов [6]. Подобным образом было наглядно продемонстрировано, что небольшие количества НВг (газ) могут вызвать быстрое окисление углеводородов при таких температурах, при которых этот процесс является бесконечно медленным [7]. Одним из наиболее интересных примеров по каталитическому влиянию следов примесей является, вероятно, изомеризация нормального бутана в изобутан [c.16]

    Значение К может быть найдено из равновесных концентраций. Это уравнение позволяет определить индивидуальные константы скоростей, так как сумму ( 1-1- /сг) можно измерить, а отношение / 1/ 2 = К известно. Если отношение К = кх/к2 очень велико или очень мало, то это означает, что одна из двух реакций медленная по сравнению с другой. Тогда можно пренебречь более медленной реакцией, и случай сведется к одной простой реакции первого порядка. Такого типа реакций много. Среди них газофазные превращения цис- и транс-изомеров, например изостильбена СеНбСН = = СНСвН [1], каталитическое превращение и-бутана в изобутан С4Н10 в растворе [2], рацемизация а- и р-глюкозы [3] и других сахаров [4], превращение у оксимасляной кислоты в лактон в водных растворах [5]. [c.34]

    В литературе имеются весьма противоречивые данные о влиянии условии термообработки алюмоплатиновых катализаторов на их активность в реакции изомеризации, что связано с различными способами их приготовления и испытания в связи с зткм зтот вопрос бьш специально изучен. Гидроксид алюминия (бемит), получаемый синтетически, содержит до 80% воды. После сушки при 110-130 °С содержание воды уменьшается до =6,5%. Для получения каталитически активного у-оксида алюминия он должен быть подвергнут прокаливанию при определенной температуре. Результаты испытания в реакции изомеризации н-пентана платиновых катализаторов, приготовленных на основе гидроксида алюминия, содержащего фтор и прокаленного при различных температурах, показали, что с увеличением температуры прокаливания от 130 до 650 °С их каталитическая активность проходит через максимум, который соответствует температуре 500 °С (табл. 2.4). По технологии приготовления катализатора оксид алюминия после прокаливания подвергается гидратации при погружении в водный раствор НгРсС] отсюда вытекает необходимость вторичной термической обработки катализатора для удаления из него воды. [c.50]

    Гомогенно-каталитические реакции особенно распространены при проведении процессов в жидкой фазе. К таким процессам относятся ускоряющиеся под действием водородных ионов реакции этерификации и гидролиза сложных эфиров, инверсии сахаров, мутаротации глюкозы, а также катализируемый некоторыми анионами и катионами распад перекиси водорода в водных растворах. Кроме того, гомогенно-каталитическими являются реакции полимеризации олефинов в жидкой фазе под действием серной кислоты, полимеризация олефинов в жидкой и паровой фазах в присутствии трехфторнстого бора или фтористого водорода и многие другие. [c.276]

    На рис. XII, 1 показа ны пути рассмотренной) реакции по некаталити ческому и каталитическому механизмам. Согласно этой схеме, разница в энергиях активации есть не что иное, как эн тальпия образования активного комплекса, в состав которого входит ка-тализатор, из активного комплекса, состоящего только из исходных веществ. Этот же рисунок иллюстрирует случай, когда катализатор К2 вызывает процесс, вообще не идущий без его участия и приводящий к образованию иных продуктов реакции по сравнению с результатом действия катализатора К1 и результатом некаталитической реакции,. Опыт дает много примеров подобного селективного действия катализаторов. Например, окисление тиосульфат иона перекисью водорода в водном растворе в присутствии иодид-ионов описывается следующим [c.278]

    Для последующих опытов все катализаторы были изготовлены путем нанесения фталоцианинов кобальта ич О %-ного водного раствора едкого натра на активированные угли. Для выбора марки угля, наиболее полно удовлетворяющего требованиям технологии по адсорбционной способности и активности в реакции окисления меркаптанов, были проведены исследования процесса насыщения ИВКАЗом и по.чифталоцианином кобальта различных углей. На рис.3.6 приведены кинетические кривые насын ения фталоцианином кобальта различных углей. В таблице 3.7 представлены результаты исследования каталитической активности гетерогенных катализаторов в реакции окисления н-додецилмеркаптана молекулярным кислородом. [c.67]

    Кундо Н.Н., Кейер Н.Н, Каталитическое действие фталоцианинов в реакции окисления сероводорода в водных растворах // Кинетика и катализ. 1970. №11. С.91. [c.149]

    Отравление, в основном, специфично. Каждый яд действует замедляюще, как правило, только в отношении од ного катализатора и определенной реакции. При изменении компонентов реакции или условий ее проведения этот яд может оказаться безвредным. Так, например, иод и сулема —сильные яды для разложения перекиси водорода на платиновом катализаторе, но они не снижают активности платины при каталитическом выделении водорода из водного раствора хлористого хрома [30]. При гидрировании бензола никель можно отравить тиофено-лом, а при гидрировании форона он сохраняет активность [32]. [c.66]

    Нефтяной толуол (ГОСТ 17410—78) получают в процессе каталитического риформинга бензиновых фракций и при пиролизе нефтяных продуктов. Используют в качестве сырья для органического синтеза, высокооктановых добавок к моторным топливам, растворителя и в других целях. Представляет собой прозрачную бесцветную легкоподвижную жидкость, не содержащую посторонних примесей и воды, не темнее раствора К Сг О, концентрации 0,003 г/дм Реакция водной вытяжки нейтральная, испаряется без остатка, испытания на медной пластинке вьщерживает. [c.469]

    Газообразные продукты реакции, выходящие из каталитического конвертора, поступают в стальной холодильник, где конденсируется около 50% ацетона (или около 80% метилэтилкетона). Водород, количество которого увеличилось в результате образовавшегося при дегидрировании, промывается водой в скруббере, работающем по принципу противотока. Орошение поддерживают такое, чтобы концентрация ацетона в скрубберных водах достигала 20% затем кетон выделяют из водных растворов перегонкой. Около 2% спирта остается ненрореагировавшим его отделяют при перегонке и возвращают на дегидрирование. [c.476]

    Реакция линейной полимеризации ацетилена в моновинилацетилен, дивинилацетилен и т. п., происходящая под каталитическим влиянием кислого раствора полухлористой меди, была открыта Ньюлэндом в США 30 лет назад. Ацетилен поглощается водным раствором хлорида аммония или хлорида щелочного металла, насыщенным полухлористой медью. При нагревании раствора можно отогнать из него непрореагировавший ацетилен и его полимеры, в основном дивинилацетилен (1,5-гексадиен-З-ин) и тетрамер ацетилена (1,5,7-октатриен-З-ин). Если этот процесс проводить непрерывно при низких степенях превращения ацетилена, можно показать, что первичным продуктом реакции является моновинилацетилен. В соответствующих условиях этот димер ацетилена может стать основным продуктом. Таким образом, процесс полимеризации протекает по следующей схеме  [c.290]

    Кундо H.H., Кейер Н.П. Каталитическое действие фтанционинов в реакции окисления сероводорода в водных растворах. /Кинетика и катализ, 1970, т.Х1, вып.1, - С.91-99. [c.94]

    Значительно большие эффекты ускорения были получены при исследовании аминолиза л-нитрофенилацетата пиперидином и имидазолом в безводном толуоле, содержащем бензоат тетра-н-гексиламмо-ния [58]. Для реакции с пиперидином (П) получено выражение типа (3.10) набл = А [П] -f 00 [П]2 -Ьk [П] [СеН,СОО-],где = 0,011 M-i., -i 00 = 0,24 М . l оо = 280 М . -i. Так как бензоат в водном растворе гораздо менее основен, чем пиперидин, а каталитической активностью в толуоле обладает более высокой ( оо оо). Менджер с сотр. [58] полагают, что в толуоле эти молекулы [c.101]

    В водных растворах пероксид водорода самопроизвольно медленно разлагается по уравнению 2Н2О2 = 2НгО + Ог- Присутствие в растворе некоторых твердых веществ, а также катионов и анионов некоторых соединений действует каталитически, ускоряя этот процесс. В зависимости от примененного катализатора эта реакция в водных растворах может быть как гетерогенной, так и гомогенной. В данной работе катализатором является раствор дихромата калия, что и определяет гомогенный характер этой каталитической реакции. [c.46]

    В гомогенных каталитических реакциях скорость пропорциональна количеству катализатора. Само количество катализатора обычно невелико. Так, для заметного ускорения окисления Na2SOa в водном растворе достаточно добавления ничтожных количеств USO4 (до концентрации порядка М). [c.297]

    Выполнение работы. Перекись водорода в водных растворах самопроизвольно разлагается 2Н202 = 2Н20 + 02. В присутствии некоторых катионов и анионов, а также некоторых твердых тел разложение заметно ускоряется. Реакция может, следовательно, служить примером гомогенной (в присутствии анионов и катионов) пли гетерогенной (в присутствии твердого тела) каталитической реакцин. В данной работе исследуется пример гетерогенного катализа. [c.231]

    Особый случай рассматриваемых реакций представляют авто-каталитические, например гидролиз этилацетата в водном растворе. Продукт реакции — уксусная кислота и ион водорода ускоряют реакцию. Скорость автокаталитнческой реакции вначале возрастает вследствие увеличения количества продукта, являющегося катализатором, а затем падает в результате израсходования исходных веществ. Причем если начальная концентрация катализатора и скорость некаталитической реакции малы, то реакция идет в, течение некоторого времени настолько медленно, что практи- [c.204]


Смотреть страницы где упоминается термин Каталитические реакции в водных растворах: [c.371]    [c.20]    [c.133]    [c.286]    [c.356]    [c.357]    [c.382]    [c.202]    [c.202]    [c.38]    [c.196]    [c.202]    [c.58]    [c.560]   
Смотреть главы в:

Физическая химия -> Каталитические реакции в водных растворах




ПОИСК





Смотрите так же термины и статьи:

Каталитические реакции Реакции

Каталитические реакции Реакции каталитические

Реакции в растворах

Реакции каталитические



© 2024 chem21.info Реклама на сайте