Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Иод действие на азотистые основания

    Авторы объясняют отравляющее действие азотистых оснований нейтрализацией активных центров на поверхности алюмосиликат-ного катализатора. [c.23]

    Каталитические яды. Азотистые основания, содержащиеся в углеводородном сырье, подавляют крекирующую способность катализаторов гидрокрекинга. Однако в отличие от аморфных алюмосиликатов, которые легко отравляются аммиаком, цеолитные катализаторы сохраняют активность даже при значительной концентрации аммиака. Подобная повышенная устойчивость к дезактивирующему действию азотистых оснований и аммиака объясняется более высокой кислотностью цеолитов. Влияние аммиака на крекирующую способность иллюстрируется данными по гидрокрекингу прошедшего гидроочистку газойля с интервалом кипения 170-460° С. Гидрокрекинг газойля проводился в присутствии и в отсутствие аммиака [15]. [c.350]


    Нами изучалось ингибирующее действие азотистых оснований, выделенных из вакуумного газойля. Это связано с тем, что имеется тенденция к удалению азотистых соединений из нефтяного сырья, в частности вакуумного газойля, предназначенного для каталитических процессов переработки. [c.267]

    От кислотной экстракции азотистых оснований принципиально не отличается и сернокислотное выделение из нефти и нефтепродуктов органических сульфидов, так как последние под действием сильных кислот переходят в легко гидролизуемые ониевые формы  [c.8]

    Азотистые основания чрезвычайно активны как каталитические яды и действуют в этом отношении значительно сильнее, чем лй-бые другие гетероатомные комноненты нефти. Так, процесс гидрирования нефтяных фракций протекает удовлетворительно при концентрации серы до 0,3% Щ1С., однако требуется предварительная очистка сырья, если содержание в нем азота превышает всего лишь 0,001% [776]. [c.139]

    Кислотный катализатор оказывает и отрицательное действие, превращая часть азотистого основания в соль, не способную к [c.560]

    Катализаторы с повышенной кислотностью более стойки к отравлению азотом. Применение в качестве носителей цеолитов также повышает стойкость катализаторов к его действию. Детальные исследования влияния концентрации азота и азотистых соединений на активность и срок службы бифункционального катализатора показали, что при содержании в гидрогенизате первой ступени 0,06% азота, в том числе 0,024% азотистых оснований, активность катализатора снижалась даже при повышении давления до 150 о/ . Только снижение концентрации азота до 0,01% и повышение давления до указанного уровня позволило устранить дезактивацию катализатора [c.268]

    В первый период масла, восприимчивые к присадкам, окисляются крайне медленно, так как все зарождающиеся в объеме масла цепи окисления обрываются ингибитором окисления. После истощения присадки масло окисляется со скоростью, близкой к скорости окисления базового масла. Действие присадки тем эффективнее, чем длительнее индукционный период окисления масла, и эта эффективность зависит от углеводородного состава масла и наличия примесей неуглеводородных соединений, промотирующих окисление масла (азотистых оснований, нафтеновых кислот, кислородсодержащих продуктов окисления масла). [c.239]


    Основная масса бензина (60-65%) при трехступенчатой гидрогенизации получается на стадии бензинирования. Катализатором является сульфид вольфрама У52 в количестве 10%, нанесенный на алюмосиликат. Достоинства этого катализатора - небольшое газообразование при высокой расщепляющей способности и повышенное изомеризующее действие, особенно сильно проявляемое на низших углеводородах. Так, например, фракция бута-нов содержит до 70% изобутана, а получаемый бензин имеет достаточно высокое октановое число. Сильным ядом для катализатора являются азотистые основания, например первичные и вторичные амины, однако при наличии предварительного гидрирования эти соединения расщепляются. [c.147]

    Наиболее распространенным приемом исследования состава полисахаридов является изучение продуктов расщепления полимерных молекул путем кислотного гидролиза. Существуют также и другие методы установления состава полисахаридов, такие как ферментативный гидролиз, метанолиз, ацетолиз, пиролиз, метод, основанный на действии азотистой кислоты, распад под действием ультразвуковых волн и механического воздействия [15]. Эти методы использовались при исследовании отдельных полисахаридов, но Б дальнейщем не нашли щирокого применения. [c.61]

    В результате последовательного действия разнообразных клеточных экзо- и эндонуклеаз нуклеиновые кислоты подвергаются распаду до стадии рибо- и дезоксирибонуклеозид-3 - и 5 -фосфатов. Дальнейший распад образовавшихся продуктов связан с ферментативными превращениями мононуклеотидов , нуклеозидов и далее свободных азотистых оснований. На [c.500]

    I этапе гидролиза действуют 3 - и 5 -нуклеотидазы, катализирующие гидролитический распад мононуклеотидов до свободных нуклеозидов с отщеплением неорганического фосфата соответственно от С-3 или С-5 атомов углеводного остатка. На И этапе происходит перенос остатка рибозы от нуклеозида на свободную фосфорную кислоту с образованием рибозо-1-фосфата и свободного азотистого основания. [c.500]

    Первичные, вторичные и третичные амины разно относятся к действию азотистой кислоты азотистая кислота в присутствии минеральной кислоты переводит первичные амины в соли диазония (I), вторичные — в нитрозамины (II), третичные — в соли и-нитрозо-оснований (III)  [c.306]

    Подобным же образом детальное изучение влияния концентрации кислоты (вернее, концентрации воды) в случае опытов с фосфорной и серной кислотами и инактивирующего действия азотистых оснований на такие кислоты, окисные катализаторы и катализаторы Фриделя-Крафтса лишний раз подтверждает, что они должны быть сильными кислотами. Известно, что серная и фосфорная кислоты имеют наивысшую активность при концентрациях 98 и 107% с резким возрастанием ее по мере приближения к указанным величинам. Гамметт [62], а также Облэд, Хиндин и Миллс [136] на многочисленных примерах показали, что небольшие количества воды могут весьма заметно снижать активность сильных кислот. Подобным же образом небольшие количества азотистых соединений могут инактивировать используемые при полимеризации кислотные катализаторы. Несмотря на присутствие большого количества кислотных молекул, в одинаковой мере обладающих каталитической активностью, в каждый данный момент активны только некоторые из них. Это существенно для твердых кислотных катализаторов. Если взаимодействуют соседние участки, то деактивация небольшими количествами ядов не является доказательством, что только небольшое количество участков способно проявлять каталитическую активность. Активность твердой поверхности может быть сходна с каталитической активностью жидкой кислоты. Наряду с этим для твердых кислотных катализаторов в некоторых случаях возможно действительное существование неоднородных кислотных участков. [c.350]

    Комплекс, получающийся при этом, всегда содержит галоид йз аллильной компоненты. Иодистый аллил в эту реакцию не вступает. Иодид XXXII не может быть получен также путем обмена из других галогенидов. Это связано, вероятно, с пространственными требованиями мостиковых групп. Координационное число металла в комплексах этого типа равно 7. Может быть поэтому они не получаются для хром не склонного к образованию семикоординационных соединений. Следует отметить также, что распад XXXII на моно--мерные молекулы происходит только под действием азотистых оснований, но не фосфинов. [c.265]

    Такое диспропорционирование дает и Мп2(С0)ю под действием азотистых оснований в условиях термической или фотохимической реакции [102д]. [c.266]

    Прежде всего необходимо разобрать поведение первичных и вторичных нитропарафияов под действием азотистой кислоты, так как на основании этого можно вывести заключение о природе нитросоединений. [c.270]

    В практике нефтеочистки ранее наблюдались большие потери с образованием смолистых осадков при обработке дистиллятов смазочных масел концентрированной серной кислотой. Потери значительно снижались, если обрабатывались масляные дистилляты, полученные при перегонке под высоким вакуумом, когда крекинг незначителеп или вовсе отсутствует. Хотя нельзя сказать, что причины образования смолистых осадков прн действии концентрированной серной кислоты на вышекипящие нефтяные дистилляты стали внолпе понятны, несомненно, однако, что этот суммарный результат включает реакции серной кислоты с непредельными углеводородами, незначительное сульфирование углеводородов, содержащих в молекуле ароматические кольца, реакцию или растворение сернистых соединений, нафтеновых кислот, азотистых оснований и, возможно, других загрязнений. [c.98]


    Для разделения азотистых оснований по числу конденсированных ароматических колец в молекулах использовалась реакция восстановительного гидроформилирования [186]. Метод основан на различиях в поведении оснований нри действии на них муравьиной кислоты в триэтиламине нри 100°С пиридины не вступают в эту реакцию, хинолины подвергаются N-фopмилиpoвaнию-(1,1), а акридины гидрируются по гетероциклу (1.2). [c.23]

    Для относительно глубокоочищенных и работающих при температурах не выше 100—120 С масел применяются антиокислительные присадки (или, как их часто называют, антиокислители), механизм действия которых основан на способности обрывать окислительные цепи. К таким антиокислителям относятся соединения аминного или фенольного характера, например фенил-а-нафтиламин (неозон-а), п-оксидифениламин, 2,6-ди-трйт-бутил-4-метилфенол (ионол), некоторые азотистые, сернистые, фосфористые соединения и т. п. Параоксидифениламин, фенил-сс-нафтиламин и др. добавляются к маслам глубокой очистки (турбинным, трансформаторным, для реактивных двигателей МК-8 и др.) в количестве 0,01—0,02%, ионол — в количестве 0,2—0,7%. Такие присадки наиболее эффективны нри добавлении к нестабильным белым маслам (вазелиновому, медицинскому), из которых в процессе очистки полностью извлечены естественные антиокислители (табл. И. 17— И. 21). Некоторые антиокислители способны снижать окисляемость этих масел в десятки или даже сотни раз (см. табл. И. 21). Добавление антиокислительных присадок к турбинным и трансформаторным маслам также достаточно эффективно стабильность масел возрастает в несколько раз (табл. И. 22-11. 24). [c.581]

    Ввиду таких серьезных преимуществ при применении гидрокрекинга для получения легких нефтепродуктов нужно использовать катализаторы с высокой кислотной активностью. Такие катализаторы очень сильно отравляются азотистыми основаниями в результате блокирования кислотных активных центров, поэтому применять их можно для переработки дистиллятных продуктов с низким содержанием азота. При значительном содержании в сырье азотистых соединений его нужно предварительно очищать от азота и гидрокрекинг проводить в две ступени. В первой ступени в основном проходят гидроочистка и неглубокий гидрокрекинг, при котором гидрируются полициклические ароматические углеводороды. Для этого используют устойчивые к действию азота и серы катализаторы гидроочистки. Во второй ступени гидроочищенное и отчасти гидрокрекированное сырье перерабатывают на катализаторе с высокой кислотной активностью. Из опубликованных данных известно применение в качестве катализаторов гидрокрекинга смеси сульфидов никеля и вольфрама (6% N1 и 19% У), нанесенных на алюмосиликат, палладия (0,5%) на цеолите типа У, платины на цеолите. Катализаторы на основе цеолитов обладают повышенной стойкостью к действию соединений азота и весьма перспективны. [c.298]

    Прочие реакции серной кислоты с компонентами нефтяных фракций. Имеющиеся в составе нефти гзотистые соединения взаимодействуют с серной кислотой, образуя сульфаты, переходящие в кислый гудрон. Нафтеновые кислоты частично растворяются в серной кислоте, а частично сульфируются, причем карбоксильная группа нафтеновых кислот при сульфировании не разрушается. Продукты взаимодействия нафтеновых 1 серной кислот ослабляют эффективность действия серной кислогы на другие соединения, поэтому целесообразно перед сернокислотной очисткой предварительно удалить из очищаемого продукта нафтеновые кислоты. Условия очистки. Технологический режим сернокислотной очистки зависит от ее назначения. Дли очистки, имеющей целью удаление смолистых веществ из мaзo ныx масел, повышение качества осветительных керосинов, удаление сернистых соединений, применяют 93% кислоту. При деароматизации используется 98% кислота или олеум. Легкая очистка бензина, предназначенная для улучшения цвета или удаления азотистых оснований, проводится серной кислотой с концентрацией 85% г ниже. Применение разбавленной кислоты там, где это возможно, предпочтительнее, так как кислый гудрон образуется в меньших количествах, ослабляются процессы полимеризации. [c.317]

    Действие серной кислоты на смолистые вещества, по данным А. Н. Саханова и Н. А. Васильева [51], проявляется в трех направлениях. Часть смол растворяется в серной кислоте без видимых изменений. Другая часть подвергается полимеризации с образованием асфальтенов. Третья часть смол при воздействии на них серной кислоты образует сульфокислоты. Все это увязывается со сложным составом смолистых веществ, описанным выше. Азотистые основания, по исследованиям К. П. Лихушина [52], при действии на них серной кислоты переходят в кислый гудрон. Нафтеновые кислоты растворяются в серной кислоте и частично сульфируются [53]. Серная кислота является эффективным обессеривающим агентом. Сернистые соединения в дистиллятах масел относятся к ароматическим сульфидам и гетероциклическим соединениям, содержащим серу в кольце. Реакционная способность этих веществ с серной кислотой, по-видимому, крайне незначительна в условиях обычной очистки масел. [c.231]

    Производные ароматических аминов и азотистой кислоты. Соли диазония. Открытые Петером Гриссом соли диазония получаются при действии азотистой кислоты на кислые растворы ароматических первичных аминов и являются важнейшими производными ароматических оснований. Их значение очень велико, так как они являются необходимыми исходными материалами для получения соединений с самыми разнообразными функциями и лежат в основе большого класса азокрасителей. [c.585]

    Действие серной кислоты. При обработке се(рной кислотой масляных нефтепродуктов непредельные соединения, асфальтены и некоторая часть смол превращаются в высокомолекулярные полимеры и продукты уплотнения. Другая часть смол образует сульфокислоты, третья — растворяется в кислоте, не изменяясь. Все перечисленные выше вещества переходят в кислый гудрон и вместе с ним отделяются от масла. Переходят также в гудрон азотистые основания и незначительная часть серни- [c.322]

    В химическом отношении пиридоксин проявляет свойства стабильного азотистого основания. Из растворов он осаждается фосфорновольфрамовой кислотой солями тяжелых металлов (свинца, ртути, серебра, платины), его осадить нельзя. Минеральные кислоты, нагревание или охлаждение на витамин Ве не оказывают влияния [23]. Не действует на него также жидкость Фелинга [21 ]. С хлорным железом пиридоксин подобно фенолам дает красновато-коричневую окраску. Изучением химической структуры пиридоксина занимались в 1938—1939 гг. различные исследователи Стил-лер, Керештези, Стивенс и Гаррис [5, 23, 25] в США Кун, Вендт и Вестфаль [26—29] в Германии Итиба и Мити [30] в Японии. [c.154]

    Под действием у-излучения в опытах in vitro происходит денатурация ДНК и РНК, разрушение вторичной структуры нуклеиновых кислот, что в ИК-спектрах выражается в ухудшении разрешения отдельных полос поглощения, изменении относительных интенсивностей, соответствующих v( =0), v,(NH2), v iNHz), 5(NH2), v( = ). Снижение интенсивностей указанных полос поглощения свидетельствует о дезаминировании азотистых оснований ДНК и РНК и насыщении двойных связей пиримидинов. [c.96]

    Непрореагировавщее свободное основание (0,121 г), выделенное из кислотного экстракта, вновь подвергают действию азотистой кислоты, причем получают 0,112 г нейтрального продукта. [c.619]

    Для 2,1-бензизоксазолов характерно легкое расщепление под действием различных реагентов. Незамещенный 2,1-бензизоксазол под действием оснований превращается в антраниловую кислоту через 3-анион (схема 106) [97], однако нуклеофильная атака положения 3 аммиаком приводит к образованию тримерного продукта [105]. 3-Метилзамещенное при действии оснований в более жестких условиях дает о-аминоацетофенон [97]. Кватернизация действием диметилсульфата приводит к смеси метилированных о-аминобенз-альдегидов [97]. Восстановление различными агентами дает о-ами-нозамещенные, а окисление может привести к продуктам азосочетания или к о-нитрозо- и о-нитрозамещенным [97]. При действии азотистой кислоты легко получаются о-диазониевые соли [97]. В обзорах [97, 104] рассмотрено большое число реакций 2,1-бензизоксазолов с образованием гетероциклических систем, включая [c.492]

    Внешние воздействия, например повышение температуры, добавле ние органических растворителей и другие, приводят к изменению макроструктуры. Это проявляется вначале в расхождении тяжей друг от друга (этот процесс условно называют плавлением). При гидролизе в достаточно мягких условиях отдельные полииуклеотидные цепи могут распадаться на нуклеотиды. Последние далее отщепляют при действии растворов щелочей фосфорную кислоту и превращаются в соответствующие нуклеозиды. Наконец, в присутствии кислот может протекать также и гидролиз гликозидных связей с образованием 2-дезок-си-О-рибозы и гетероциклических азотистых оснований. [c.665]


Смотреть страницы где упоминается термин Иод действие на азотистые основания: [c.178]    [c.178]    [c.178]    [c.15]    [c.63]    [c.312]    [c.244]    [c.244]    [c.309]    [c.11]    [c.162]    [c.218]    [c.343]    [c.1466]    [c.111]    [c.36]    [c.570]   
Химия углеводородов нефти и их производных том 1,2 (0) -- [ c.890 ]




ПОИСК





Смотрите так же термины и статьи:

Азотистое основание



© 2025 chem21.info Реклама на сайте