Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Треонин структура

    Расположение, или последовательность, аминокислот вдоль белковой цепи определяет первичную структуру белка. Первичная структура ответственна за неповторимую индивидуальность белка. Замена хотя бы одной аминокислоты может привести к изменению биохимических свойств белка. Например, серповидноклеточная анемия представляет собой генетическое (наследственное) заболевание, вызываемое единственной ошибкой в построении белковой цепи гемоглобина. Эта белковая цепь содержит 146 аминокислот. Первые семь аминокислот в нормальной цепи-валин, гистидин, лейцин, треонин, пролин, глутаминовая кислота и снова глутаминовая кислота. У человека, страдающего серповидноклеточной анемией, шестая аминокислота в этой цепи-валин, а не глутаминовая кислота. Замещение всего одной аминокислоты с кислотной функциональной группой в боковой цепи на аминокислоту с углеводородной боковой цепью настолько изменяет растворимость гемоглобина, что в конечном итоге приводит к нарушению нормального кровообращения (см. также разд. 12.8, ч. 1). [c.448]


    По-видимому, два интрона утеряны. Полипептидная последовательность, кодируемая вторым, третьим, пятым и шестым экзонами, содержится также в составе фактора комплемента С9, где она также кодируется отдельными экзонами. Далее расположен район из восьми экзонов, он гомологичен району гена, кодирующему предшественник эпидермального фактора роста. Экзоны 7, 8 и 14 представляют собой повторы, кодирующие по 40 аминокислот и содержащиеся в генах, контролирующих процесс свертывания крови. Затем расположен экзон, кодирующий домен, обогащенный сери-ном и треонином, который является мишенью 0-гликозилирования рецептора. В итоге структура гена рецептора липопротеида низкой плотности в целом наглядно демонстрирует возможность перетасовки экзонов и соответствующих автономных функциональных структур сложной белковой молекулы. [c.194]

    При изучении химической структуры биологически активных белков, например ферментов, важное значение имеет определение различных функциональных групп белковой молекулы 5Н-групп, ОН-групп серина и треонина, е-ННз-группы лизина, имидазольного цикла гистидина и др. [c.123]

    Углеводную номенклатуру следовало бы применять к аминокислотам, используя префиксы О и Ь для обозначения конфигурации хирального центра с наибольшим номером, уточняя с помощью символов Dg и Lg то, что стандартом служил глицериновый альдегид. Названия >5-треонин и Lg -треонин обозначают одну н ту же структуру .  [c.197]

    Гидролизующий полинуклеотиды бактериальный фермент, который широко используется для анализа ближайших соседей (гл. 2, разд. 3,4), может осуществлять гидролиз ДНК и РНК до З -нуклеотидов. Установлена трехмерная структура молекулы нуклеазы стафилококков, состоящей из 149 аминокислотных остатков [69—71]. Так же как и в случае панкреатической рибонуклеазы, молекулу нуклеазы стафилококков можно расщепить на два активных пептида (фрагменты, построенные из остатков 6—48 и 49—149), которые, соединяясь, образуют комплекс, обладающий ферментативной активностью [71, 72]. Комплекс образуется даже в том случае, когда от меньшего пептида отщеплены остатки 43—48. Однако остаток 01и-43, который связывает имеющий существенное значение ион Са +, необходим для проявления ферментативной активности [72], так же как и пептидная связь с соседним треонином (Тге-44). [c.124]

    К настоящему моменту (середина 1977 г.) определены структуры более 100 белков, больщинство которых являются ферментами. Точность этих измерений не настолько велика, как в случае малых органических молекул, так как все кристаллы белков обладают определенной долей неупорядоченности, вследствие чего раз-рещение ограничивается 0,2 нм. Это означает, что боковые радикалы с одинаковой геометрией различить не удается (например, валин от треонина или амидную группу от карбоксильной в остатках глутамата и аспартата). По этим данным, таким образом, нельзя определять полные аминокислотные последовательности. Идентификация таких спорных аминокислот должна быть поэтому основана на обычных методах определения последовательности (см. часть 23). Эти ограничения, однако, являются второстепенными для метода, дающего информацию о структуре и не имеющего себе равных по степени точности и объему [47]. [c.485]


    Обязательных шаблонов, относящихся как к структурам олигосахаридов, так и к аминокислотным последовательностям вокруг гликозилируемых серина и треонина, не существует (за исключением того, что для 0-гликозидов этих аминокислот имеется тенденция к -конфигурации (Ю)). Некоторые примеры аминокислотных последовательностей вокруг места присоединения углеводов в гликопротеинах приведены в структурах (10а)— (10в) (подчеркнуты остатки, по которым присоединяются углеводы). В щелочных условиях 0-гликозиды серина и треонина легко претерпевают р-элиминацию. [c.549]

    Общим фундаментальным механизмом, посредством которого реализуются биологические эффекты вторичных мессенджеров внутри клетки, является процесс фосфорилирования — дефосфорилирования белков при участии широкого разнообразия протеинкиназ, катализирующих транспорт концевой группы от АТФ на ОН-группы серина и треонина, а в ряде случаев—тирозина белков-мишеней. Процесс фосфорилирования представляет собой важнейшую посттрансляционную химическую модификацию белковых молекул, коренным образом изменяющую как их структуру, так и функции. В частности, он вызывает изменение структурных свойств (ассоциацию или диссоциацию составляющих субъединиц), активирование или ингибирование их каталитических свойств, в конечном итоге определяя скорость химических реакций и в целом функциональную активность клеток. [c.290]

    При разделении,гликопротеинов плазмы электрофорезом получают активную фракцию этих белков, состоящую из 5 компонентов с М 11 ООО + 32 000. Все компоненты содержат только аланин и треонин, структура углеводной части соответствует дисахариду о-галактозил-о-К-ацетилгалактозамину. [c.429]

    Из вышерассмотренного анализа третичной структуры белковой молекулы можно вывести следующее определение третичной структуры это структура белка, обусловленная взаимодействием цистеиновых аминокислотных остатков, либо это клубок, фиксированный дисульфидными мостиками. Хотя в общем случае не исключено, что отдельные элементы (т.е. петли) клубка могут быть образованы взаимодействием и других аминокислот водородными связями с участием ОН-групп серина и треонина, ионными связями аммонийно-карбоксилатного типа ОСО-) остатков лизина (аргинина) и аспарагиновой (глутаминовой) кислоты. Но такие петли будут нестойкими и легко разрушаться при действии рас-т орителя, изменении pH среды и т.д. [c.99]

    ГЕПАРИН (от греч. Ьёраг-печень), протеогликан соединительной ткани, обладающий антикоагулянтным и гиполи-пидемич. действием. В молекуле нативного Г. протяженные полисахаридные цепи присоединены к белковой цепи, структура к-рой полностью не выяснена. В узле углевод-белковой связи содержится фрагмент галактоза-галактоза-ксилоза, в к-ром ксилоза присоединена О-гликозидной связью к группе ОН остатка L-серииа или L-треонина. Полисахаридные цепи молекулы Г. (см. ф-лу) построены из чередующихся остатков a-D-глюкозамина и уроновой к-ты с [c.523]

    Молекула П. (мол. масса ок. 23 тыс.) представляет собой одну полипептидную цепь, построенную из 199 аминокислотных остатков и имеющую три дисульфидные связи. Установлена первичная структура П. человека и нескольких видов животных. Видовые различия в хим. строении П. немногочисленны. N-Концевое положение в полипептидной цепи П. у человека и ряда животных (напр., свинья, кит) занимает остаток лейцина, у др. животных (напр., овца, крупный рогатый скот)-остаток треонина. С-Концевым аминокислотным остатком в молекуле П. независимо от видовой принадлежности является остаток цистеина. Молекула П. обладает довольно устойчивой третичной структурой ок. 50% полипептидной цепи находится в виде а-спирали, По хим. строению, физ.-хим. и биол. св-вам П, сходен с гормоном роста (со.штотропином) и плацентарным. гак-тогеном. Считается, что эти трн регуляторных белка произошли в процессе эволюции в результате дупликации гена [c.99]

    От обычных белков, состоящих исключительно из протеиногенных аминокислот, следует отличать сложные белки, называемые также конъюгированными белками или протеидами. Это вещества, содержащие помимо белковой части небелковый органический или неорганический компонент, необходимый для функционирования, могущий быть связанным с полипептидной цепью ковалентно, гетерополярно или координационно и вместе с аминокислотами присутствующий в гидролизате. Важнейшие представители сложных белков гликопроТеины (простетическая группа — нейтральные сахара (галактоза, манноза, фукоза), аминосахара (N-aцeтилглюкoзa-мин, N-aцeтилгaлaктoэaмин) или кислые производные моносахаридов (уро-новые или сиаловые кислоты)), липопротеины, содержащие триглицериды, фосфолипиды и холестерин, металлопротеины с ионом металла, связанным ионной или координационной связью, фосфопротеины, связанные эфирной связью через остаток серина или треонина с фосфорной кислотой, нуклеопротеины, ассоциирующиеся с нуклеиновыми кислотами в рибосомах или вирусах, а также хромопротеины, содержащие в качестве просте-тической группы окрашенный компонент. Обзор структур важнейших белков см. в разд. 3.8. [c.345]


    Основные химические изменения, которые происходят при этом, состоят в частичном разрушении нескольких аминокислот, таких, как цистеин, треонин, серии, изолейцин, лизин, с попутным снижением биологической ценности. Возможно появление необычных аминокислот в результате преобразования некоторых аминокислотных остатков (изолейцин и аргинин, дающие соответственно аллоизолейцин и орнитин), или как следствие конденсации между остатков одной и той же белковой цепи или двух цепей посредством межмолекулярных или внутримолекулярных ковалентных связей с образованием лантионина и особенно лизиналанина, возможная токсичность которого в настоящее время обсуждается [6]. В любом случае эти реакции образования сетчатой структуры еще больше снижают переваримость азотистой фракции. [c.589]

    Структуры всех 20 нормальных аминокислот (компонентов, выделенных из гидролизатов белков) были установлены к 1935 г. самым первым Браконно в 1820 г. был охарактеризован глицин, самым последним — треонин. Хотя цистеин входит в состав многих пептидов и белков как таковой, Однако их функционирующие формы содержат окисленный продукт — цистин, дисульфидные мостики которого могут образовываться как внутри-, так и межмолекулярно. За исключением глицина, все кодируемые аминокислоты белков оптически активны и одинаково хиральны при асимметрическом ос-углеродном атоме. По аналогии, с обычной номенклатурой для углеводов, их обычно рассматривают как соединения, обладающие -конфигурацией, при этом -серин считают родоначальным соединением. За исключением цистеина, конфигурация всех аминокислот соответствует S-конфигурацни по системе Кана-Ингольда-Прелога положение серы в цистеине таково, что -цистеин имеет / -конфигурацию. Изолепцин и треонин имеют по второму центру асимметрии при -углеродных атомах найденные в белках (2S, 35)-2-амино-3-метилвалериановая и (2S, 3/ )-2-амино-3-гидроксимасляная кислоты являются стереоизомерами. [c.227]

    В ЭТОЙ форме они связываются с анионной группой сульфированной смолы. Элюция аминокислоты достигается либо повышением pH и, таким образом, смещением равновесия (2) влево, либо увеличением ионной силы, что приводит к конкурентному связыванию со смолой аминокислот и катионов элюата. Аспарагиновая, глутаминовая и цистеиновая кислоты [последняя образуется в результате окисления цист(е)иновых остатков (см. разд. 23.3.3)] элюируются легче всего, ибо это двухосновные кислоты. Лизин и аргинин, напротив, элюируются с трудом в силу того, что каждый из них несет в боковой группе протонированную группу. М.ежду этими крайними случаями располагаются остальные аминокислоты по мере того как увеличивается гидрофобное взаимодействие их боковых групп с ароматической структурой ионообменной смолы. Не удивительно, что ароматические аминокислоты обладают наибольшим гидрофобным связыванием и выходят лишь перед лизином и аргинином. С другой стороны, присутствие нейтральной полярной группы, такой как гидроксильная или амидная, уменьшает силу гидрофобного взаимодействия, так что серин, треонин, аспа--рагин и глутамин элюируются раньше лейцина, изолейцина и валина. [c.261]

    Инсулин, получивший свое название от наименования панкреатических островков (лат. insula—островок), был первым белком, первичная структура которого была раскрыта в 1954 г. Ф. Сэнджером (см. главу 1). В чистом виде инсулин был получен в 1922 г. после его обнаружения в экстрактах панкреатических островков Ф. Бантингом и Ч. Бестом. Молекула инсулина, содержащая 51 аминокислотный остаток, состоит из двух полипептидных цепей, соединенных между собой в двух точках дисульфидными мостиками. Строение инсулина и его предшественника проинсулина приведено в главе 1 (см. рис. 1.14). В настоящее время принято обозначать цепью А инсулина 21-членный пептид и цепью В—пептид, содержащий 30 остатков аминокислот. Во многих лабораториях осуществлен, кроме того, химический синтез инсулина. Наиболее близким по своей структуре к инсулину человека является инсулин свиньи, у которого в цепи В вместо треонина в положении 30 содержится аланин. [c.268]

    Одной из широко распространенных химических постсинтетических модификаций является фосфорилирование остатков серина и треонина, например, в молекуле гистоновых и негистоновых белков, а также казеина молока. Фосфорилирование-дефосфорилирование ОН-группы серина абсолютно необходимо для множества ферментов, например для активности гликоген-фосфорилазы и гликоген-синтазы. Фосфорилирование некоторых остатков тирозина в молекуле белка в настоящее время рассматривается как один из возможных и специфических этапов формирования онкобелков при малигнизации нормальных клеток. Хорошо известны также реакции окисления двух остатков цистеина и образование внутри- и межцепочечных дисульфидных связей при формировании третичной структуры (фолдинг). Этим обеспечивается не только защита от внешних денатурирующих агентов, но и образование нативной конформации и проявление биологической активности. [c.533]

    Было известно, что простетическая группа сукцинатдегидрогеназы не идентична ФМН или ФАД и в отличие от них ковалентно связана с одной из аминокислот белка [373]. Последующими исследованиями установлено, что этот кофермент имеет структуру 8а-(Ы- -гистидил)-ФАД. При воздействии протеолитическими 4 рментами из сукцинатидегидрогеназы было выделено пептидное производное — СД-ФАД [373]. Затем в результате кислотного гидролиза из этого соединения получено 6—7-аминокислот — аланин, серин, глутаминовая кислота, валин, треонин и, кроме того, СД-рибофлавин, содержащий еще один аминокислотный остаток [373]. Были основания считать, что аминокислота связана с 8-СНз-группой рибофлавин [374]. [c.553]

    Полный гидролиз групповых веществ крови показывает, что в их состав входит около 80—85% углеводов (галактоза, фукоза, N-ацетилглюкозамин и N-ацетилгалактозамин) и около 15—20% аминокислот, из которых пролин, треонин и серин составляют более половины. В некоторых образцах групповых веществ, в частности в групповых веществах из жидкости кисты, содержатся также N-ацетилнейраминовая кислота, которая, очевидно, в этом случае заменяет часть остатков фукозы. Групповые вещества различного типа А, В, Н я т. д.) очень мало отличаются друг от друга по составу, хотя некоторые детали все же можно отметить так, например, в групповом веществе Le содержание фукозы заметно понижено. В настоящее время установлено, что специфичность групповых веществ зависит от находящихся на периферии молекулы олигосахаридных цепей, которые являются иммунологическими детерминантами (см. ниже). Однако в целом структура групповых веществ, несмотря на значительное число исследований, остается неясной. При действии разбавленных кислот и оснований (щелочь, сода, гидроксиламин) групповые вещества отщепляют значительную часть углеводов Пептидная часть биополимера, напротив, отличается стойкостью и только в незначительной степени распадается под действием папаина и фицина . Эти данные позволяют отнести групповые вещества к гликопептидам типа III, в которых центральная пептидная цепь окружена присоединенными к ней олигосахаридными цепями , что было экспериментально подтверждено в самое последнее время полукинетическим методом исследования (см. стр. 569). При изучении хода гидролиза группового вещества А разбавленными кислотами и щелочами оказалось, что отщепляются лишь мелкие углеводные фрагменты, в то время как все аминокислоты остаются в высокомолекулярной части. Лишь в жестких условиях гидролиза, когда распаду подвергаются и пептидные связи, а также при избирательной деструкции пептидных связей высокомолекулярный фрагмент начинает дробиться и в гидролизате появляются аминокислоты. Подобная картина гидролиза может наблюдаться только в том случае, если пептидная часть составляет основу гликопротеина (тип III). [c.581]

Рис. 9.7.6. Изображение пространствениого строения центральной части участка 3-структуры ОПИТ. Десять остатков аминокислоты обозначены следующими буквами С — цистеин, F — фенилаланин, I — изолейцнн, Q — глутамин, R — аргинин, Т — треонин, V — валин, Y — тирозин. Водородные связи между группами NH и СО обозначены щтриховкой. Отметим, что протоны NH л-го остатка и протоны С"Н (п - 1)-го остатка, обозначенные стрелками, расположены очень близко. Наблюдаемые NOE позволяют провести последовательную идентификацию резонансных сигналов. (Из работы [9.31].) Рис. 9.7.6. <a href="/info/604697">Изображение пространствениого</a> строения <a href="/info/1585715">центральной части</a> участка 3-<a href="/info/1740490">структуры ОПИТ</a>. Десять остатков аминокислоты обозначены следующими буквами С — цистеин, F — фенилаланин, I — изолейцнн, Q — глутамин, R — аргинин, Т — треонин, V — валин, Y — тирозин. <a href="/info/1038770">Водородные связи между</a> группами NH и СО обозначены щтриховкой. Отметим, что протоны NH л-го остатка и протоны С"Н (п - 1)-го остатка, <a href="/info/1451465">обозначенные стрелками</a>, расположены очень близко. Наблюдаемые NOE позволяют провести <a href="/info/250204">последовательную идентификацию</a> резонансных сигналов. (Из работы [9.31].)

Смотреть страницы где упоминается термин Треонин структура: [c.355]    [c.355]    [c.141]    [c.475]    [c.384]    [c.353]    [c.265]    [c.244]    [c.428]    [c.188]    [c.189]    [c.558]    [c.304]    [c.329]    [c.514]    [c.273]    [c.58]    [c.517]    [c.204]    [c.453]    [c.172]    [c.172]    [c.132]    [c.132]   
Общая органическая химия Т.10 (1986) -- [ c.226 , c.227 ]

Белки Том 1 (1956) -- [ c.103 , c.106 , c.107 ]




ПОИСК





Смотрите так же термины и статьи:

Треонин



© 2025 chem21.info Реклама на сайте