Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Фрагменты высокомолекулярной РНК

    Ацидолиз в присутствии различных органических кислот вызывает расщепление высокомолекулярного вещества углей на меньшие фрагменты, которые присоединяются к кислотным радикалам и становятся более удобными для исследования. [c.7]

    Полимеризация изопрена под влиянием катализаторов Циглера-Натта. Характерной особенностью реакций полимеризации изопрена в присутствии каталитической системы R3AI + Ti U является резкая зависимость скорости процесса от состава катализатора (рис. 6). Максимальный выход полимера наблюдается при строго эквимолекулярном содержании алюминия и титана. Это соотношение оптимально и с точки зрения получения высокомолекулярного стереорегулярного полимера. При избытке Ti U превалируют процессы катионной полимеризации, приводящие к малорастворимым полимерам, содержащим циклические фрагменты. Катализаторы, полученные при отношениях Al/Ti > 1, приводят к образованию наряду с ч -1.4-полиизопренами олигомерных продуктов — циклических и линейных димеров (тримеров) изопрена. Выход [c.211]


    На рис. 145 схематически сопоставлены изменения осмотического давления с концентрацией для растворов низкомолекулярного вещества (кривая 2), слабого электролита (кривая 3) и высокомолекулярного соединения (кривая /). Как видно из рисунка, осмотическое давление раствора низкомолекулярного вещества возрастает прямо пропорционально концентрации. Для слабого электролита осмотическое давление раствора обусловлено не только числом молекул, но и ионов, а так как степень ионизации уменьшается с повышением концентрации, осмотическое давление возрастает более медленно, чем концентрация. Об этом свидетельствует выпуклость кривой, которая обращена в сторону ординаты. Наконец, осмотическое давление раствора высокомолекулярного вещества возрастает быстрее, чем увеличивается концентрация. Это происходит из-за того, что макромолекула благодаря большим размерам и гибкости ведет себя в растворе как несколько более коротких молекул. Поэтому роль кинетического элемента играет уже не пся макромолекула, а соответствующие ее фрагменты. Чем более гибка молекула, тем при прочих равных условиях осмотическое давление выше и тем больше оно отклоняется от значения, вычисленного по уравнению Вант-Гоффа. На основании таких представлений для описания зависимости осмотического давления от концентрации полимеров было предложено уравнение [c.360]

    Наряду с вышеуказанными основными реакциями при каталитическом гидрооблагораживании могут протекать побочные реакции ассоциирования частично гидрированных полярных осколков или структурных фрагментов высокомолекулярных соединений, ведущие к формированию новых структурных единиц с меньшими размерами частиц и ассоциатов, чем исходные надмолекулярные структуры. [c.50]

    Состав и структура исходного органического вещества определяют активность и размер образующихся фрагментов. Высокомолекулярные и активные продукты могут явиться источником для коксовых отложений. В этом случае необходимо использовать такие условия проведения процесса, чтобы достигалась достаточно быстрая стабилизация этих соединений. [c.201]

    Адсорбция атомов углерода на соседних металлических центрах сопровождается разрывом связей С—Н. Дальнейшая дегидрогенизация атомов углерода приводит к образованию кратных связей углерод—металл, что обуславливает ослабление связей С—С и в конечном счете их.разрыв. Образующиеся фрагменты подвергаются гидрированию в метан. Предполагают, что при гидрогенолизе более высокомолекулярных парафинов образуются несколько иные про- [c.43]


    Чем объясняется увеличение растворимости углей, подвергнутых алкилированию Ранее авторы этой статьи показали, что под действием катализаторов Фриделя — Крафтса протекают реакции крекинга и конденсации молекул угля. В соответствии с сегодняшними представлениями, битуминозные угли представляют собой смесь высокомолекулярных соединений, молекулы которых состоят из ароматических фрагментов, связанных алифатическими или эфирными мостиками  [c.306]

    Нефтяные дисперсные системы (НДС) содержат высоко-молекулярные компоненты и, таким образом, могут рассматриваться в виде нефтяного раствора высокомолекулярных соединений. Дисперсной фазой в этих растворах являются отдельные макромолекулы, их фрагменты, либо совокупности. [c.38]

    Низкотемпературные агрегативные комбинации наблюдаются при низких температурах, когда преимущественно на физическом уровне взаимодействуют надмолекулярные структуры, включающие парафиновые и асфальтеновые фрагменты. При понижении температуры межмолекулярные взаимодействия обусловлены силами Ван-дер-Ваальса. Формируются обратимые низкотемпературные комбинации высокомолекулярных соединений нефти — парафиновых, ароматических углеводородов, смол, асфальтенов. [c.52]

    Значительная часть гетероорганических соединений металлов и других микроэлементов концентрируется в смолах и асфальтенах, которые представляют собой многокомпонентные смеси сложных по составу и молекулярной структуре гетероатомных органических соединений различных классов и гомологических рядов. Углеводородные фрагменты их молекул по составу и строению близки к высокомолекулярным гибридным углеводородам нефти [3...8,22...32,38,51...54,57...59,64]. [c.13]

    Наиболее высокомолекулярные компоненты мезофазы образуются в результате реакций, протекающих в её объёме [98,108]. Из работ [98,99] следует, что в образовании мезофазы принимают участие компоненты КМ с Мп = 300...8000. Причём плоские ароматические фрагменты их молекул имеют La = 0,6...1,5 нм, что соответствует Мп = 150... 800 [98]. Число таких фрагментов равно 2...10. Они связаны между собой через метиленовые группы и/или связями Сар-Сар [98.101]. Однако мезофаза формируется также из менее ароматичных соединений. Так, термообработка остаточного битума при 430°С (1ч) даёт мезофазу с Na =7,13, значительной долей алифатического углерода и концентрацией спин-центров 4-10 г [117]. Последнее согласуется с тем, что в пеках и коксах 1... 10 % молекул представлены стабильными свободными радикалами. В мезофазе их концентрация на порядок больше, чем в изотропной части материала [108]. Предполагается, что это Tt-радикалы. [c.39]

    Углеводные цепи, построенные по принципу олигосахаридов, можно продолжать почти до бесконечности. Так создаются высокомолекулярные структуры — полисахариды. Вот несколько примеров линейных регулярных полисахаридов (в квадратных скобках — фрагменты, отвечающие так называемым повторяющимся звеньям) (см. с. 27). [c.26]

    Химическое связывание высокомолекулярных соединений по концевым группам с помощью низкомолекулярного сшивающего агента. В результате формируется редкая сетка с протяженными линейными фрагментами между узлами сшивки. [c.26]

    Общепринятое представление о конденсированном углероде как о пространственно - структурированном высокомолекулярном соединении (ВМС) делает беспредметной саму постановку вопроса об исследовании его молекулярного строения, поскольку из химии ВМС известно, что понятие макромолекула" в этом случае лишено физического смысла. Тем не менее выяснение природы отдельных молекулярных участков (сегментов, фрагментов, звеньев) между узлами разветвления или сшивками необходимо для лучшего понимания организации углеродных структур. [c.18]

    Расчеты размеров высокомолекулярных сера органических соединений с известной структурной формулой, исходя из длин углов связей и Вандерваальсовых радиусов атомов, показывают, что они могут изменяться в пределах от 0,5 до 1,0 нм, а для металлпорфиринов от 0,7 до 1,2 нм. Если учесть то, что в нефтяных остатках эти соединения могут входить в состав более сложных молекул с разветвленной структурой или находиться в составе структурных фрагментов смол и асфальтенов, фактические размеры их можно ожидать более высокими, чем расчетные, например, как указанно вьиие, по данным ГПХ остатков. Более точные данные можно было бы получить тем же методом ГПХ при наличии узких фракций концентратов гетероатомных соединений, выделенных препаративно из нефтяных остатков, но таких данных пока не опубликовано. [c.40]

    Дикетоны III—VI превращаются в углеводороды или путем дегидратации [441 или путем дальнейшей кротоновой бимолекулярной конденсации. В то же время соединения III—VI имеют все фрагменты строения, характерные для би- и трициклических высокомолекулярных нафтенов. Важно также отметить, что в результате описанных реакций из непредельных кислот ie— js (т. е. кислот, наиболее широко распространенных в природе) получаются полизамещенные циклические углеводороды, имеющие длинные алифатические цепи. [c.378]


    Путь создания искусственных моделей не всей молекулы асфальтенов, а ее основных структурных звеньев позволяет более надежно и полно воспроизвести в синтетической модели состав, свойства и строение реальных объектов исследования. Учитывая, что первой стадией высокотемпературных превращений асфальтенов должен быть процесс распада их на основные фрагменты, особенно по связям атомов углерода с гетероатомами, фрагменталь-ное моделирование позволит вплотную подойти к выяснению химизма реакций превращения асфальтенов. Иными словами, открывается наиболее короткий и прямой путь для изучения научных основ химической переработки и использования смолисто-асфальтеновой части нефтей, так как именно эта часть нефти (высокомолекулярные неуглеводородные соединения) используется наименее эффективно, и поэтому именно она является основным источником дальнейшего повышения степени использования нефти. [c.107]

    При анализе растворов высокомолекулярных соединений в гепловом движегти участвуют не только молекулы как целое, но и фрагменты молекул fSOj. Кроме поступательного и вращательного движений нужно учесть колебания и относительное вращение всех звеньев макромолекулы друг относительно друга. Появляющиеся дополнительные внутренние степени свободы являются причиной отличия поведения растворов высокомолекулярных соединений от обычных растворов. Описание явлений становится существенно более сложным вследствие того, что в больших молекулах устанавливаются связи между их частями. Образуются структуры, пронизанные молекулами растворителя. Такие растворы, являясь молекулярнымя, гораздо ближе по своим свойствам к коллоидным системам, чем к истинным растворам. Вместо одного характерного времени т в случае малых молекул для описания теплового движения макромолекул в растворах используют уже спектр времен п — характерное время, за которое фрагменты макромолекулы смещаются на расстояния порядка радиуса действия мел<молекулярных сил т-2 — время распространения конформационной перестройки по молекуле то — время вращательной корреляции (или характерное время затухания корреляционной функции) и т. д. [81]. Физический смысл величины то в том, что она является средним временем, за которое макромолекула поворачивается на угол 1 радиан за счет теплового движения. [c.44]

    В работе 97] приводятся результаты ирименения ИК-сиект-роскопип для анализа растворов высокомолекулярных неуглеводородных соединений нефти — смолисто-асфальтеновых веществ. Доказательством наличия поликондеисированного ароматического ядра в молекулах асфальтенов как раз служит полоса вблизи 1600 см . Присутствие алифатических цепочек фиксируется полосой 720 см , слабая интенсивность которой указывает, что это — короткие иеразветвленные цепочки. В то же время ИК-спектроскопия не дает ответа на вопрос о наличии циклоалкановых фрагментов в ядрах асфальтенов. [c.55]

    Как видно из этих соотношений, влияние метильных групп в молекуле сказывается тем в большей степени, чем ниже значение п. С ростом п молекулярные параметры н-алканов стремятся к конечным величинам. В рамках такого подхода между низко- и высокомолекулярными н-алканами имеется отличие, заключающееся в заметном изменении молекулярных параметров 1Т0Д действием сил кристаллического поля для низкомолекулярных н-алканов и их постоянстве — для высокомолекулярных н-алканов, отдельные части которых выступают как кинетически независимые фрагменты при тепловом движении. Согласно структурно-механическому [43] и изложенному с позиций динамической модели молекулы н-алкана подходу, к высокомолекулярным следует отнести н-алканы, начиная с н-эйкозана. Напеним, что н-алканы с числом атомов углерода более 30 в нефтях не обнаружены. [c.74]

    Разработан метод денсиметричес кого анализа углей, исходя из значений плотности, элементного состава и молекулярной массы [298]. Этот метод был применен и для структурно-группового анализа высокомолекулярных нефтяных фракций, в частности для определения степени конденсированности ареновых фрагментов [299]. [c.149]

    Смолисто-асфальтеновые вещества (САВ) представляют со бой неуглеводородные высокомолекулярные соединения нефти, которые содержат до 88 % углерода, до 10 7о водорода и до 14 % гетероатомов [223, 224]. В САВ в количестве 1—2% сконцентрированы полностью все металлы, присутствующие в нефтях [225, 226]. Невзирая на значительное разнообразие м,есторождений нефти, условий их залегания при соблюдении одинакового метода их выделения содержание углерода и водорода в асфальтенах колеблются в узких пределах 82 3 и 8,1 0,7% 225]. Этим значениям соответствует отношение Н С = 1,15 0,05 (табл. 92а). Постоянство атомного отнощения Н С — факт сам по себе удивительный, если учесть возможность большого числа перестановок фрагментов в молекулах, включающих гетероатомы. Это является наиболее веским доказательством того, что асфальтены имеют определенный состав и осаждаются в соответствии с ним, а не в зависимости от растворимости. [c.263]

    Несмотря на то, что применение смолисто-асфальтеновых веществ (САВ) известно более ста лет, настоящий этап характеризуется значительными и возрастающими успехами [147, 148]. Ранее было известно, что они могут быть использованы для производства битумов, разновидностей нефтяного углерода, природных депрессаторов, для изоляции трубопроводов. Все эти области не учитывали специфических особенностей, разнообразных и ценных свойств САВ. В 1936 г. Черножуковым и Крейном была показана стабилизирующая роль САВ в окислении минеральных масел. Более поздними работами была выявлена стабилизирующая способность асфальтенов в процессах термо- и фотодеструкции, окисления углеводородов и синтетических полимеров [149—150]. Ингибирующими центрами САВ являются гетероатомы и функциональные группы, имеющие подвижный атом водорода (гидроксипроизвод-ные ароматических фрагментов, аминные и серусодержащие компоненты). Ингибирующая способность высокомолекулярных соединений нефти повышается с ростом их общей ароматичности, концентрации гетероатомов и функциональных групп. В зависимости от этих факторов константа скорости ингибирования может изменяться в широких пределах от ж 10 до 10 л/(моль-с). Ингибирующая активность асфальтенов на 1—2 порядка выше, чем смол. [c.347]

    При выработке иммунного ответа клеточные рецепторы реагируют на углеводные детерминанты макромолекулы антигена. Обратным примером может служить взаимодействие клеток с макромолекулами холерного токсина. Последний представляет собой белок, в состав которого входят две высокомолекулярные пептидные субъединицы. Одна из них ответственна за первичное взаимодействие с клетками организма-хозяина, а другая — за токсический эффект. Было установлено, что рецептором на поверхности клеток, осуществляющим узнавание молекулы токсина и связывание с ним, является гликолиПид — ган-глиозид Gmi, в молекуле которого к липидной части присоединен олигосахаридный фрагмент, содержащий остаток сиаловой кислоты. После присоединения токсина к ган-глиозиду от первого отщепляется токсическая субъединица, под дейстием чего происходит ряд изменений в активности ферментов клетки, в первую очередь активация адени-лат-циклазы, а это в конечном итоге приводит к крупным нарушениям клеточного метаболизма и гибели клетки. [c.158]

    Изменение парамагнитной активности системы и, конкретно, надосадочной жидкости и осадка можно объяснить следующими представлениями. Введение легкого алкана в нефтяную систему приводит к конформационным изменениям асфальтеновых агрегатов с образованием новых комбинаций и гсерераспределением асфальтеновых частиц различной молекулярной массы в этих комбинациях. Наивысшая степень дезагрегирования с выделением в систему максимального количества наиболее высокомолекулярных асфальтеновых фрагментов наблюдается при когн1 ентрациях легкого алкана, соответствующих максимальным значениям массы осадка. В этих же условиях в системе непрерывно изменяется сорбционная активность асфальтеновых агрегатов, которая, впрочем, приводит к их взаимодействиям. [c.130]

    При введении депрессорной присадки т1аблюдается иная картина. Высокомолекулярные вещества, попадая в нефтяную систему за счет собственных взаимодействий, а также стремясь расположиться в пространстве в энергетически наиболее выгодном прямолинейном состоянии, стягивают и сжимают некоторым образом агрегативные комбинации. При этом часть жидкой фазы, иммобилизованной в межчастичном пространстве агрегативных комбинаций, выделяется в объем благодаря эффекту выжимания мокрой губки . Таким образом, в системе появляется дополнительное количество жидкой фазы и формируются более плотные и в то же время аморфные частицы агрегативных комбинаций, некоторым образом обволоченных и в определенном смысле замкнутых присадкой, которая одновременно продолжает существовать в системе в виде прямолинейных и изогнутых молекулярных фрагментов. При понижении температуры такой системы агрегативные комбинации, сближаясь друг с другом за счет усадочных напряжений, взаимодействуют по поверхности периферии, возможно, с некоторым захватом внутренних областей. При этом жидкая фаза в растворе остается в пространстве между отдельными частицами. [c.246]

    В середине 1960-х годов начались исследования нуклеотидных последовательностей РНК. Первыми были определены первичные структуры тРНК (Р. Холли и сотр., 1965 А. А. Баев и сотр., 1967). Развитие техники фракционирования фрагментов нуклеиновых кислот и прежде всего гель-электрофореза (Ф. Сэнгер и сотр.) позволило в начале 1970-х годов приступить к изучению первичной структуры высокомолекулярных РНК. В 1976—1978 гг. были созданы исключительно быстрые и эффективные методы секвени-рования ДНК и РНК (А. Максам и У. Гилберт, Ф. Сэнгер и сотр.), которые позволили за короткое время получить огромную информацию о первичной структуре генов, их регуляторных элементах, вирусных и рибосомных РНК и т. д. [c.7]

    Между этими крайностями имеются всевозможные системы, содержащие больше или меньше белковой компоненты и больше или меньше полисахаридной. Такие соединения называют гликопротеинами, а также протеогли-канами (гликаны — общее название полисахаридов). Точного определения у этих терминов нет, и те или иные классы биополимеров называют либо гликопротеинами, либо протеогликанами, руководствуясь при этом скорее традицией, чем какими-либо четкими критериями. Аналогично обстоит дело с ковалентно связанными углеводами и липидами их называют гликолипидами, а также линонолисахаридами. Весь же тип природных высокомолекулярных соединений, включающих ковалентно связанные фрагменты полимеров более чем одного класса, называют смешанными биополимерами, а в последнее время — гликоконъюгатами. [c.44]

    Многие природные высокомолекулярные соединения являются разнозвен-агми, те. содержат в своей цепи фрагменты различной хтшчесиой природы. [c.425]

    Достоинства метода микрокапсулирования — простота, универсальность, возможность многократного использования нативного фермента (фермент может бьггь отделен от непрореагировавшего субстрата и продуктов реакции процедурой простого фильтрования). Особенно существенно, что методом микрокапсулирования могуг быть иммобилизованы не только индивидуальные ферменты, но и мультиэнзимные комплексы, целые клетки и отдельные фрагменты клеток. К недостаткам метода следует отнести невозможность гакапсулированных ферментов осуществлять превращения высокомолекулярных субстратов. [c.90]


Библиография для Фрагменты высокомолекулярной РНК: [c.115]   
Смотреть страницы где упоминается термин Фрагменты высокомолекулярной РНК: [c.149]    [c.286]    [c.151]    [c.25]    [c.90]    [c.81]    [c.260]    [c.96]    [c.951]    [c.153]    [c.155]    [c.11]    [c.41]    [c.137]    [c.137]    [c.199]    [c.161]    [c.175]    [c.21]   
Смотреть главы в:

Установление первичной структуры нуклеиновых кислот -> Фрагменты высокомолекулярной РНК




ПОИСК







© 2025 chem21.info Реклама на сайте