Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Каучук и его упругие свойства

    При изучении свойств линейных полибутадиенов и сополимеров типа СКЭП было показано, что нестабильность течения смесей уменьшается при расширении ММР исходных каучуков. В последнее время фундаментальными исследованиями вязко-упругих свойств монодисперсных полимеров подтверждено решающее влияние ширины ММР на эффект разрушения потока при течении линейных полимеров [20]. Этот вывод широко подтверждается при [c.79]


    Можно говорить о среднем градиенте скорости потока, скорость которого изменяется от минимальной величины у стенок до максимальной величины в центре потока. Если сечение потока круглое, то в любом направлении по радиусу средние градиенты скорости равны относительная деформация сечения во всех направлениях будет одинакова, форма сечения при этом не изменится, увеличится только величина сечения по выходе из шприц-машины. Но если профилирующее отверстие будет иметь квадратное сечение, то средние градиенты скорости в разных направлениях будут неодинаковы. Это приводит к тому, что молекулы каучука, находящиеся в зонах более высокого градиента скорости, при выходе из головки шприц-машины будут в большей степени проявлять свои упругие свойства и в этих зонах произойдет наибольшее увеличение размеров сечения полуфабриката, который будет иметь не квадратное сечение, а сечение с выпуклыми сторонами. [c.304]

    К каучукам относят эластичные высокомолекулярные соединения, способные под влиянием внешних сил значительно деформироваться и быстро возвращаться в исходное состояние после снятия нагрузки. Упругие свойства и прочность каучуки сохраняют в сравнительно широком интервале температур. Каучуки подразделяются на натуральные и синтетические. В течение долгих лет получали только натуральный каучук из млечного сока тропического дерева гевеи, называемого латексом. [c.222]

    С повышением температуры в системе (а иногда в результате введения добавок) физические связи превращаются в химические (вулканизация каучука, спекание электродных масс) при этом система переходит в твердое состояние и обладает упругими свойствами. В отличие от пластических деформаций упругие деформации обратимы — после прекращения действия внешней нагрузки они исчезают. Вулканизованные углеродонаполненные каучуки характеризуются высокоэластичной деформацией — разновидностью упругой деформации. При высокоэластичной деформации — значительной деформации при относительно малых внешних нагрузках— перемещается не вся макромолекула связующего, а только та ее часть, в которой отсутствуют пространственные сшивки. [c.79]

    Итак, каучук — высокомолекулярное вещество с линейной макромолекулой. Чем же обусловлено наиболее замечательное свойство каучука — упругость  [c.321]

    В связи со сказанным становится понятной сущность процесса вулканизации каучука. Сырой, необработанный каучук обладает лишь небольшой упругостью. Уже при небольшом повышении температуры он становится больше похожим на пластичную смолу. В процессе вулканизации происходит сшивание нитевидных молекул каучука при помощи серных мостиков. В результате этого несколько возрастает взаимодействие между цепями и увеличиваются упругие свойства каучука. При дальнейшей вулканизации число серных мостиков возрастает, их становится так много, что они прочно сшивают нитевидные молекулы каучука, закрепляя их в неподвижном состоянии. Так каучук превращается в твердый,] неэластичный эбонит. [c.322]


    Эти сополимеры обладают чрезвычайно высокой теплостойкостью. Б то время как большинство углеводородных каучуков имеет весьма непродолжительный срок службы при 100° С, вулканизаты витона сохраняют полезные упругие свойства в течение неограниченного времени при 204° С, 3000 ч при 232° С, 1000 ч при 260° С, 240 ч при 288° С и 48 ч при 315° С. Из других ценных свойств следует отметить превосходную стойкость к озону и атмосферным воздействиям, хорошие низкотемпературные и механические свойства и стойкость к набуханию или разрушению под действием различных химикалий и растворителей, например азотной кислоты, серной кислоты, сероводорода, ксилола, нефтяных масел и др. Однако сильнополярные растворители, например низкомолекулярные сложные эфиры и кетоны, вызывают значительное набухание. [c.211]

    При сшивании молекулярных цепей каучук теряет пластичность и приобретает упругие свойства. [c.300]

    Каучук благодаря своим упругим свойствам служит для демонстрации деформаций, возникающих под действием сил. При помощи длинной резиновой трубки или шнура можно с успехом демонстрировать бегущие и стоячие волны. [c.292]

    В работе [120] сделана попытка объяснить ухудшение гистерезисных свойств протекторных резин на основе СКИ-3 при введении олигодиенов с концевыми изоцианатными и гидразидными группами конкурирующей адсорбцией на поверхности техуглерода макромолекул каучука и олигодиенов. Сделано предположение, что при введении п-нитрозодифениламина, способствующего преимущественной адсорбции макромолекул СКИ-3, снижаются гистерезисные потери, улучшаются вязко-упругие свойства и когезионная прочность резиновых смесей. [c.141]

    Особый интерес представляет механизм упрочнения хрупких полимеров каучукоподобными полимерами. Для объяснения влияния каучука на свойства жесткого полимера была предложена механическая модель [557], состоящая из параллельно соединенных жесткого и упругого элементов, которые последовательно соединяются с элементом, моделирующим свойства стеклообразной матрицы. Роль каучука состоит в предотвращении катастрофического распространения образующейся трещины и в обеспечении возможности холодного течения матрицы, приводящего к образованию шейки при больших деформациях. При этом предполагается, что основная роль наполнителя сводится к созданию дополнительного свободного объема, благоприятствующего образованию шейки. Хрупкое разрушение таких полимеров, как ПММА, ПС, сополимер стирола с акрилонитрилом и др., может быть связано с тем, что поглощение энергии происходит в слоях микронной толщины у поверхности растущей трещины [558]. При упрочнении хрупких поли.меров каучуками деформация происходит уже в слоях значительно большей толщины, что приводит к увеличению способности поглощать энергию. Однако в целом энергия, поглощаемая каучуком в области волосяных трещин, намного меньше, чем в матрице, поскольку каучук характеризуется значительно более низким значением модуля, а напряжения в обеих фазах одинаковы. Поэтому можно полагать, что частицы каучука способствуют возникновению гидростатического растягивающего напряжения в полимерной матрице. Оно приводит к увеличению свободного объема, которое способствует возрастанию податливости к снижению хрупкости. Источником гидростатического давления служит относительная поперечная усадка, обусловленная различием значений коэффициента Пуассона каучука (0,5) и матрицы (около 0,3). [c.279]

    Основная особенность рассмотренной модели заключается в том, что упругие свойства изолированных полимерных цепей оказываются полностью обусловленными тепловым движением. Растягивая каучук, мы совершаем работу только по преодолению теплового движения, и вытянутый эластомер сокращается только потому, что броуновское движение стремится дезориентировать звенья вытянутых макромолекул. [c.78]

    К каучукам относят эластичные высокомолекулярные соединения, способные под влиянием внешних сил значительно деформироваться и быстро возвращаться в исходное состояние после снятия нагрузки. Сохранение упругих свойств в сравнительно широком интервале температур объясняется тем, что молекулы таких высокомолекулярных соединений, имеющие линейное строение, в обычном состоянии изогнуты и закручены, но легко вытягиваются и способны обратимо перемещаться друг относительно друга, восстанавливая после снятия усилия свои прежние формы и длину. [c.588]

    До открытия стереоспецифического синтеза было известно только несколько природных полимеров, способных кристаллизоваться или, по крайней мере, образовывать высокоупорядоченные трехмерные системы — целлюлоза, шелк, каучук и гуттаперча. Мономером последних двух полимеров является изопрен-1,4, каучук на 97% состоит из г<ис-изопрена-1,4, гуттаперча— почти полностью из гранс-изопрена-1,4. Синтетические полимеры по своим упругим свойствам явно уступали природным, поскольку они не были стереорегулярными. После того как удалось провести стереоспецифический синтез каучука [6, 7] и гуттаперчи [8], оказалось, что искусственные полимеры нисколько не уступают природным аналогам. Вскоре были синтезированы полимеры, не встречавшиеся в природе и превосходящие природные по своим механическим свойствам. В частности, изотактический и синдиотактический полибутадиен-1,4, а также цис- и т занс-полибутадиены-1,4 9] казались значительно дешевле полиизопрена-1,4. Наконец, широкое промышленное применение получил огромный класс синтетических полимеров — поли-а-олефины, свойства которых подробно описаны в работе [10]. [c.7]


    Ультразвуковой метод определения упругих постоянных находит в последнее время широкое применение при исследовании высокомолекулярных соединений, например каучуков, пластмасс и др. Это объясняется тем, что качество этих веществ во многом определяется их механическими свойствами. При этом следует отметить, что для высокомолекулярных соединений имеет место дисперсия скорости звука (т. е. зависимость от частоты), а следовательно, и зависимость упругих свойств этих [c.161]

    В настоящее время считается общепризнанным, что вязко-упругие свойства полимеров целиком зависят от их релаксационного спектра [19]. С другой стороны, релаксационный спектр линейных полимеров однозначно связан с характером их ММР. Отсюда вытекает важный принцип молекулярного подхода к оценке технологических свойств резиновых смесей — технологические свойства резиновых смесей на основе непластицирую-щихся каучуков практически полностью определяются молекулярно-массовым распределением исходного полимера, т. е. в первом приближении, ето средней молекулярной массой и индексом поли-дисперсности, М /М . К этой группе каучуков относятся титановый цис-полибутадиен (СКД), двойной сополимер этилена с пропиленом (СКЭП), гранс-полипентенамер (ТПП), а также полимеры литиевой полимеризации и некоторые другие эластомеры. [c.79]

    Значительно хуже "сырых" каучуков совмещаются с битумом вулканизированные каучуки - резины. В этом случае образуются грубо-дисперсные смеси, обладающие, однако, повыше ными эластическими и упругими свойствами но сравнению с битумами. [c.55]

    Проведено изучение вязко-упругих свойств каучуков с привлечением различных методов исследования б70-бТ4  [c.806]

    В отличие от каучука резина получает упругие свойства, становится эластичной, что широко используется в транспортной технике (автопокрышки, авиапокрышки) и в быту (резиновая обувь и другие изделия). Процесс превращения каучука в резину и есть процесс вулканизации. Он идет сложно, но схему химических реакций можно представить так  [c.478]

    ОЭА используются в качестве временного пластификатора в саженаполненных резинах, где требуется сочетание низкой вязкости смесей с повышенными упругими свойствами, твердостью, прочностью или где применение обычных пластификаторов исключается (например, вакуумные уплотнения), для совулканизации двух и более отличающихся по химической природе каучуков или каучуков с пластиками, а также для сенсибилизации радиационного сшивания каучуков с целью создания непрерывных процессов вулканизации шприцованных и каландрованных изделий с использованием ускорителей электронов [81, 98, 99]. [c.38]

    Предполагалось, что окисленный битум и каучуко-битумные смеси должны были бы сильно отличаться но вязкостно-упругим свойствам, которые являются функцией температуры. Это предположение основано на следующих соображениях. [c.8]

    Кроме того, опыт показывает, что нестабильность течения меньше у полимеров, макромолекулы которых имеют небольшое число длинноцепочечных разветвлений. Это, видимо, объясняется их склонностью к пластикации и меньшей долей эластически эффективных узлов в структурах, содержащих разветвленные макромолекулы, что способствует рассеянию энергии при деформации. Наличие в каучуках сильно структурированных (плотных) частиц также повышает стабильность течения смесей (но может ухудшать другие показатели), так как частицы нарушают регулярность сетки физических зацеплений и понижают ее способность к накоплению энергии внешней деформации. Например, при изучении вязко-упругих свойств акрилатных каучуков было показано, что разрушение структуры расплавов, усадка в формах и разбухание экструдатов резко уменьшается при введении в каучуки сильно сшитых частиц размером 50—300 нм [23]. При этом эластические эффекты определяются степенью структурирования частиц и мало зависят от их размеров. Аналогичные изменения, выразившиеся в уменьшении усадки и улучшении поверхности каландрованных изделий, наблюдали при введении частиц плотного геля в бутадиен-нитрильные каучуки [24]. На этом же принципе основано получение специального сорта НК с улучшенными технологическими свойствами [25]. [c.80]

    Резины под действием хладонов набухают, ухудшаются их прочностные и упругие свойства, вымываются пластификаторы. Стойкость и хладонопроницаемость каучуков и резин представлены в табл. 20.11 и 20.-12. [c.349]

    Механические свойства Т.т.-упругость, пластичность (см. Реология), твердость, хрупкость, прочность зуют их способность сопротивляться деформации и разрушению при воздействии внеш. напряжений. Для большинства Т. т. (за исключением нек-рых полимерных материалов Т1ша каучука) упругая деформация линейно зависит от величины приложенных напряжений Гука закон). В монокристаллах и текстурир. поликристаллах упругая деформация анизотропна. Т. т. с металлич. типом хим. связи обычно более пластичны в сравнении с Т. т., имеющими ионный тип связи, и в большинстве случаев при больших напряжениях испытывают вязкое разрушение (тогда как вторые - обычно хрупкое). Пластичность Т. т. возрастает с повышением т-ры. [c.501]

    Ахрамеев А.Ф., Криволапое А.А. Метод измерения и контроля вязко-упругих свойств каучуков и резиновых смесей Тез. докл. 111 конф. // Сырье и матер, для резиновой промышленности. Настоящее и будущее М., 1996. [c.459]

    Поскольку в рассмотренном выше механизме большая роль отводится связям между поверхностью частицы и полимером, то очевидно, что их исследование может дать дополнительную информацию о процессах, происходящих при усилении. Влияние структуры эластомера на усиление связано с эффектами. локализации напряжения, поскольку напряжение, возникающее на поверхности частиц наполнителя, является функцией упругих свойств материала. Этим объясняется то, что при равном числе сцеплений полимер — наполнитель и поперечных связей эффекты усиления различаются для разных каучуков. Преобладание физического взаимодействия между каучуком и сажей хорошо согласуется с механизмом выравнивания напряжений при растяжении. Более сильные взаимодей-стви я сделали бы невозможным отрыв цепей от частиц каучука. [c.266]

    К группе веществ, именуемых аморфными твердыми телами, относится множество материалов большого технического значения, ряд конструктивных материалов. Многие из них отличаются механической прочностью, твердостью, устойчивостью в отношении химических и физических воздействий и обладают ценными упругими свойствами. К их числу относятся коука, каучук, ра 1-личные текстильные волокна, целлюлоза и ее производные, стекло, краски и лаки, синтетические смолы и т. п. Однако ие следует полагать, что все аморфзные твердые тела имеют тс желательные физические свойства, о которых только что была речь. Не под- [c.284]

    Очень важно иметь по возможности ясное объяснение этих соотношений. Начать с того, что до точки максимальной прочности объемный процент наполнителя так мал, что каучук, очевидио, образует непрерывную внешнюю фазу, окружающую частички пигмента. Это заключение вполне подтверждается сходством в упругих свойствах наполненного и чистого каучуков. Это значит, что вся растягивающая нагрузка выдерживается самим каучуком. Следовательно, увеличение сопротивления разрыву, получающееся при введении наполнителя, говорит о том, что присутствие его частичек увеличивает крепость самого каучука, окружающего эти частички. [c.432]

    Каучуки — высокомолекулярные вещества, обладающие высокими эксплуатационными качествами, в частности хорошей эластичностью, водонепроницаемостью, тепло- и морозоустойчивостью, высокой стойкостью к старению. Уже свыще 100 лет каучук используют в битумных композициях для придания им эластичности, а следовательно для повыщения эксплуатационной надежности дорожных и кровельных материалов, герметиков и лаковых покрытий. Модификация битумных материалов каучуками заключается в следующем повыщается температура размягчения, уменьшается з ависи-мость пенетрации от температуры, снижается температура хрупкости, возникает способность к эластическим обр атимым деформациям, повышается жесткость и прочность битумной смеси, значительно улучшаются низкотемпературные характеристики. Для смешивания с битумом применяются чистые (неву 1канизованные) каучуки, так как они наиболее эффективно модифицируют физические свойства битумных материалов. Разнообразие видов каучуков, применяющихся для модификации битума и нашедших практическое применение, невелико. Подробно исследовано использование натурального каучука в качестве добавки к битумам в основном дорожных марок. Из синтетических каучуков наиболее часто применяют дивинилстирольный, бутадиенстирольный, поли-хлоропреновый (неопреновый) [170, 171, 172, 173, 229] и некоторые блок-сополимеы, в частности полистирол-полиизопрен— полистирол и полистирол—полибутадиен—полистирол [174, 175]. Каучукоподобные олефины полиизобутилен, сополимер изобутилена с изопреном (бутилкаучук) и сополимер этилена с пропиленом (СКЭП) также используются для совмещения с битумом [169, 176, 223]. Регенерированный каучук и отходы шин в виде крошки при совмещении с битумом дают грубые смеси, так как мало набухают в компонентах битума. Однако смеси обладают повышенными эластическими и упругими свойствами по сравнению с битумами, и поэтому указанный дешевый материал широко применяется для изготовления битУМНо-полимерных мастик [69,176]. [c.59]

    В малополярном фреоне-12 наиболее стойки полярные каучуки нитрильные, хлоропреновый, фторсополимеры. Во фреоне-13 каучуки набухают незначительно и не изменяют своего вида, за исключением фторсополимера СКФ-32. Во фреоне-22 нитрильные каучуки очень сильно набухают и не могут быть применены для этой среды. Во фреоне-142 (полярное соединение) наиболее стойки хлоропреновый, этиленпропиленовый и стереорегулярный бутадиеновый каучуки. Хлоропреновый каучук одинаково стоек ко всем фреонам. Однако он недостаточно тепло- и морозоустойчив. Силиконовые каучуки сильно набухают во всех фреонах, кроме фреона-13. Отмечается относительная стойкость нитрилсилоксанового каучука к фреону-12 (табл. 11.15). При воздействии фреонов снижаются прочностные и упругие свойства резин. С увеличением дозировки наполнителя величина набухания снижается. Фреоны существенно влияют на резины, содержащие пластификатор вымывают пластификаторы нефтяной и силиконовой основы, эфирного типа [34, 35]. [c.255]

    Мягкие резины на основе натурального, нитрильного, бутадиен-стирольного кауяуков, хлорсульфированного полиэтилена, бутилкаучука во влажном хлоре подвергакжся сравнительно быстрому разрушению. При этом заметно ухудшаются их прочностные и упругие свойства. Более высокой химической стойкостью и хлоре обладают полуэбониты и эбониты 1213 и 1394 на основе натурального и изопренового каучука СКИ-3. Температурный предел применения этих материалов во влажном хлоре составляет 95° С. [c.24]

    К каучукам относят эластичные вы-соколюлекулярные соединения, способные под влиянием внешних сил значительно деформироваться и быстро возвращаться в исходное состояние после снятия нагрузки. Упругие свойства и прочность каучуки сохраняют в сравнительно широком интервале температур. Каучуки подразделяк тся на натуральные и синтетические. [c.576]


Смотреть страницы где упоминается термин Каучук и его упругие свойства: [c.574]    [c.218]    [c.156]    [c.265]    [c.37]    [c.419]    [c.421]    [c.218]    [c.567]    [c.161]    [c.60]    [c.211]    [c.941]    [c.305]    [c.73]   
Смотреть главы в:

Основы стереохимии -> Каучук и его упругие свойства




ПОИСК





Смотрите так же термины и статьи:

Каучуки свойства



© 2024 chem21.info Реклама на сайте