Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Фотометры атомно-абсорбционны

    Атомно-абсорбционная пламенная фотометрия (атомно-абсорбционная пламенная спектрометрия). Принцип метода состоит и следующем. [c.522]

    К ним относятся эмиссионный спектральный анализ, фотометрические методы (колориметрия, спектрофотометрия, турбидиметрия, нефелометрия), эмиссионная пламенная фотометрия, атомно-абсорбционный и люминесцентный методы, рентгеноспектральный анализ, магнитная спектроскопия (ядерный магнитный резонанс и электронный парамагнитный резонанс). [c.325]


    Вопрос о преимуществах фотографической или фотоэлектрической регистрации при обнаружении очень слабых спектральных линий в случае анализа достаточно однородных материалов нельзя считать практически окончательно решенным. Теоретически преимущество должно принадлежать фотоэлектрическим приемникам, квантовый выход которых на порядок и более превосходит эквивалентный квантовый выход фотографических эмульсий. Соответствующие расчеты, выполненные в работах [748, 429], указывают, что с помощью фотоэлектрической регистрации, производящейся в оптимальных условиях, можно обнаруживать в 3—5 раз менее интенсивные спектральные линии, чем с помощью фотографической регистрации. Оптимальные условия для фотоэлектрической регистрации в некоторых методах- спектрального анализа (эмиссионный анализ растворов методом пламенной фотометрии, атомно-абсОрбционный анализ и др.) часто реализуются непосредственно (в первую очередь благодаря высокой стабильности аналитического сигнала во времени), либо легко могут быть созданы с помощью простых технических средств (например, модуляции сигнала). Именно поэтому фотоэлектрическая регистрация широко применяется в перечисленных методах анализа, обеспечивая не только удобство, экспрессность и высокую точность определений, но и возможность обнаружения очень малых содержаний искомых элементов. (Правда, нет сравнительных экспериментальных данных, из которых следовало бы, что применение в этих методах анализа фотографической регистрации не может обеспечить достижения таких же или меньших пределов обнаружения.) [c.67]

    Основные методы определения неорганических компонентов сточных вод — фотометрия, атомно-абсорбционная спектрометрия и пламенно-эмиссионная спектрометрия. [c.16]

    Экстракция микроэлементов. Как уже было сказано выше, экстракцию галогенидных комплексов используют и для концентрирования путем извлечения микроэлементов. Этот способ оказывается более выгодным, когда метод последующего определения позволяет находить содержание лишь одного или небольшого числа элементов-примесей, как, например, при использовании фотометрии, атомно-абсорбционной или эмиссионной спектроскопии пламени [1833], полярографии [1834]. В этом случае с водной фазой перед экстракцией можно проводить любые манипуляции (например, вводить высаливатели), поскольку она затем отбрасывается. Основы этого приема концентрирования и многочисленные примеры рассмотрены в монографии [47]. [c.312]


    Пламенная фотометрия позволяет быстро определять ряд элементов с точностью 2—4%, а в отдельных случаях и до 0,5%. Метод основан на измерении интенсивности излучения элементов в пламени определение проводят с помощью фотоэлементов и гальванометра. В определенном интервале наблюдается прямая зависимость интенсивности излучения элемента от его концентрации в анализируемом образце. В настоящее время метод продолжает развиваться, круг определяемых элементов непрерывно увеличивается. Получило развитие новое направление метода пламенной фотометрии — атомно-абсорбционный анализ. В отличие от эмиссионного метода в данном случае измеряется не излучение элемента в пламени, а поглощение излучения стандартного источника атомами исследуемого элемента. Атомно-абсорбционное определение как дополнение эмиссионного анализа позволяет в некоторых случаях повысить чувствительность определения, а в других — определить элементы, эмиссионным методом неопределяемые. [c.20]

    Пламя используют в качестве источника света в так называемом методе фотометрии пламени, а также как один из основных способов атомизации веществ в методе атомно-абсорбционного анализа (см. разд. 3.2). В зависимости от состава горючей смеси температура пламени может поддерживаться в интервале 2000—3000 К, что обеспечивает достаточно низкий предел обнаружения элементов, энергии возбуждения резонансных линий которых не превышают 5 эВ и соединения которых атомизируются в пламени в достаточной мере. Особое значение метод фотометрии пламени имеет для определения микроколичеств соединений щелочных и щелочноземельных металлов, для которых предел обнаружения этим методом находится в диапазоне 0,001 — 1 нг/мл. Предел обнаружения порядка 0,1—1 нг/мл достигается также для таких элементов, как европий, иттербий, свинец, медь, серебро, индий, таллий, хром, марганец, алюминий и галлий, причем в некоторых случаях в качестве аналитического сигнала используют молекулярную эмиссию пламени. Освоение высокотемпературных пламен (водородно-кислородного, ацетилен-кислородного) позволило значительно увеличить число определяемых элементов. [c.58]

    АТОМНО-АБСОРБЦИОННЫЙ СПЕКТРАЛЬНЫЙ АНАЛИЗ И ФОТОМЕТРИЯ ПЛАМЕНИ [c.138]

    Предлагаемое практическое руководство обобщает опыт преподавания физических и физико-химических методов анализа, накопленный на кафедре аналитической химии Московского государственного университета. Руководство включает два больших раздела— спектроскопические и электрохимические методы. В спектроскопические методы включены методы эмиссионной фотометрии пламени, атомно-абсорбционной спектроскопии пламени, абсорбционной молекулярной спектроскопии и люминесцентный в электрохимические — потенциометрический (в том числе с использованием ионоселективных электродов), кулонометрический, полярографический и амперометрический методы. Наряду с перечисленными методами в современных аналитических ла- бораториях используют и другие методы атомно-флуоресцентный анализ, рентгеновские методы, искровую и лазерную масс-спектрометрию, радиоспектроскопические, ядерно-физические и радиохимические методы, однако ограниченное число учебных часов не позволяет включить их в данное руководство. Изучение этих курсов предусмотрено [c.3]

    Для получения свободных атомов анализируемое вещество наг -вают до высокой температуры в пламенах. Способы введения вещества в пламена и происходящие при этом процессы описаны в Методах эмиссионной фотометрии пламени . Помимо пламен для атомизации веществ в атомно-абсорбционном методе используют специальные печи-кюветы, в которые вводят небольшое количество пробы (чаще всего в виде капли раствора). При повышении температуры печи вещество испаряется и атомизируется. Происходящие при этом процессы аналогичны процессам в пламенах. В качестве источников излучения, ослабление интенсивности которого определяется, могут быть использованы, например, лампы накаливания или различного рода газоразрядные лампы, испускающие непрерывные (сплошные) спектры в широких спектральных областях. [c.35]

    СРАВНЕНИЕ АТОМНО-АБСОРБЦИОННОГО МЕТОДА С МЕТОДОМ ФОТОМЕТРИИ ПЛАМЕНИ [c.37]

    В методе фотометрии пламени измеряют интенсивность излучения атомов, возбужденных в пламени, поэтому более правильно было бы называть этот метод атомно-эмиссионной спектрофото-метрией. Но можно измерять и поглощение (абсорбцию) излучения свободными атомами, находящимися в пламени в невозбужденном состоянии. Такой метод называют атомно-абсорбционной спектрофотометрией и используют его для определения концентрации атомов путем определения поглощения излучения. Таким образом, оба метода дополняют друг друга. Между находящимися в пламени возбужденными атомами и атомами в основном состоянии существует следующее соотношение  [c.378]


    В методе атомно-абсорбционной спектрофотометрии используется поглощение излучения атомами, находящимися в пламени в невозбужденном состоянии, в отличие от фотометрии пламени, где необходимо термическое возбуждение атомов. Поэтому атомную абсорбцию можно использовать для определения содержания таких элементов, излучение которых нельзя возбудить в пламени, что является преимуществом метода. Область применения метода атомно-абсорбционной спектрофотометрии тем самым значительно шире, чем фотометрии пламени. По- [c.380]

    Пламя было первым источником света для эмиссионного спектрального анализа. Окрашивание пламени при введении пробы в течение ста лет служит для открытия ряда металлов. Но в целом пламя применяли мало, используя, главным образом, электрические источники света. Сравнительно недавно была разработана новая техника работы, которая позволила выявить ряд ценных характеристик пламени как источника света. В настоящее время методы спектрального анализа с использованием пламени широко распространены. Они получили специальное название — пламенная фотометрия. В атомно-абсорбционном анализе пламя используется для испарения вещества и диссоциации его молекул на атомы. [c.80]

    Атомно-абсорбционный анализ. В течение последних десяти лет получил большое распространение новый вид атомного анализа по спектрам поглощения. Получить резонансное поглощение отдельных атомов можно только в парах. Поэтому анализируемую пробу вводят в высокотемпературное пламя, где она испаряется и диссоциирует на отдельные атомы, так же как и в методе пламенной фотометрии. Для более полной диссоциации молекул обычно используют восстановительное пламя, в котором образование устойчивых двухатомных молекул происходит реже. Концентрацию анализируемых элементов в пламени определяют не по излучению возбужденных атомов, а по поглощению света от дополнительного источника невозбужденными атомами. В качестве источника света используют отпаянные трубки с полым катодом (или высокочастотным разрядом), в которые тем или иным способом вводится один или несколько определяемых элементов. Такие трубки в течение длительного времени стабильно излучают узкие резонансные линии введенных элементов. Проходя через пламя, это излучение частично поглощается невозбужденными атомами анализируемой пробы, введенной в пламя. С ростом концентрации анализируемого элемента увеличивается упругость его паров [c.274]

    При атомно-абсорбционном анализе температура пламени оказывается достаточной для диссоциации практически всех соединений, а возбуждение атомов не требуется, поэтому число определяемых элементов несравненно больше, чем в методе пламенной фотометрии. Современные приборы уже в настоящее время позволяют определять содержание почти 70 элементов. [c.275]

    Метод пламенной фотометрии применяется (для открытия и определения химических элементов) в двух вариантах эмиссионная пламенная фотометрия (пламенно-эмиссионный анализ) и абсорбционная пламенная фотометрия (пламенно-абсорбционный, атомно-абсорбционный анализ). Чувствительность метода довольно высока — до 0,001 мкг в 1 мл анализируемого раствора. [c.520]

    Интенсивность резонансного излучения (источника возбуждения), прошедшего через пламя, регистрируется и измеряется спектральным прибором — атомно-абсорбционным пламенным фотометром или спектрофотометром. [c.523]

    Атомно-абсорбционный анализ (ААА) является одним из наиболее распространенных методов аналитической химии. Предварительная подготовка анализируемой пробы аналогична этой операции в пламенной фотометрии перевод пробы в раствор, распыление и подача аэрозолей в пламя. Растворитель испаряется, соли разлагаются, а металлы переходят [c.647]

    Пламена. Пламена наиболее часто применяют как в пламенной фотометрии, так и в атомно-абсорбционном и атомно-флуоресцентном анализе. Подробнее они рассматривались выше. [c.701]

    Различают групповое и индивидуальное выделение и концентрирование при групповом — за один прием отделяется несколько компонентов, при индивидуальном — из образца выделяют один компонент или последовательно несколько компонентов. При использовании многоэлементных методов определения (атомно-эмиссионный, рентгенофлуоресцентный, искровая масс-спектрометрия, нейтронно-активационный) предпочтительнее групповое разделение и концентрирование. При определении методами фотометрии, флуориметрии, атомно-абсорбционным, напротив, целесообразнее индивидуальное выделение компонента. [c.210]

    Атомно-абсорбционный метод пламенной фотометрии [c.114]

    Проблему автоматизации подготовительных химических операций, предшествующих измерениям на спектрофотометрах, пламенных фотометрах, атомно-абсорбционных и других приборах, решена в системах автоматических анализаторов (выпускаемых корпорацией Te hni on), которые успешно используются для самых различных исследований, включая клинические и промышленные применения. [c.541]

    Для регистрации ионов калия или магния применяют методы плазменной фотометрии, атомно-абсорбционной спектроскопии, радиометрии, ионселективных электродов. Содержание АТФ в среде может быть оценено по изменению люминесценции люциферина. [c.177]

    Руководство включает два больших раздела оптические методы и электрохимические методы. В первом разделе рассматриваются методы эмиссионной фотометрии пламени, атомно-абсорбционной спектроскопии пламени, абсорбционной молекулярной спектроскопии и люминесцентные методы. Второй раздел включает потенциометрический, кулонометрическнй, полярографический и амперометрический методы анализа. Единство подхода к теоретическим вопросам внутри каждого из разделов позволяет четко увидеть возможности, ограничения и недостатки каждого метода. По каждому методу даны практические работы, отражающие определенные возможности метода либо в исследовательском, либо в прикладном аспекте описана аппаратура. [c.2]

    Спектрофотометры укомплектованы монохроматором ИСП-51 с фотоэлектрической регистрацией сигнала и сканирующим приспособлением. Фирма Карл Цейсс выпускает двухканальные фильтровые пламенные фотометры FLAPH0-4, с программным управ-леиие.м — FLAPI-IO-40. Атомно-абсорбционные спектрофотометры могут работать также и в эмисспоном варианте. [c.127]

    Методы абсорбционной спектроскопии ввиду их большой чувствительности и избирательности широко применяются при решении многих задач аналитической химии. Эти методы используют при контроле производства и анализе готовой продукции ряда отраслей промышленности химической, металлургической, металлообрабагы-ваюш,ей, в почвенном, биохимическом анализе, а также для определения малых и ультрамалых количеств примесей в веществах особой чистоты (10 —10" %). Для определения больших количеств веществ с точностью, не уступающей гравиметрическим и тит-риметрическим методам, а также при анализе многокомпонентных систем применяют различные варианты дифференциальной спектро-фотометрии. При автоматизации контроля производства рационально использовать метод спектрофотометрического титрования. Методы абсорбционной спектроскопии остаются труднозаменимыми при анализе объектов, содержащих ядовитые летучие соединения, что делает ограниченным применение атомно-абсорбционного метода и методов эмиссионной спектроскопии. Особенно большое значение имеют методы абсорбционной спектроскопии для исследования процессов комплексообразования и получения количественных характеристик комплексных соединений. [c.3]

    В методе атомной абсорбции применяют горючие смеси с температурой до 3100°С (известен и непламенный вариант метода), что обесп(Зчивает возможность определения значительно большего количества элементов, чем в методе фотометрии пламени. Атомно-абсорбционный метод характеризуется также высокой селективностью, определению данного элемента, как правило, не мешают многие другие элементы, содержащиеся в пробе. [c.31]

    ФОТОМЕТРИЯ ПЛАМЕНИ (пламенная фотометрия), оптический метод количеств, элементного анализа по атомным спектрам поглощения (абсорбционная Ф. п.) или испускания (эмиссионная Ф. п.). Для получ. спектров анализируемое в-во переводят в атомный пар а пламени. Об абсорбционной Ф. п. см. Атомно-абсорбционный анализ. Эмиссионную Ф. п. делят на флуоресцентную (см. Атомнофлуоресцентный анализ) и термическую последний метод является разновидностью эмиссионного спектрального анализа и широко используется этому виду Ф. п. и посвящена данная статья. [c.631]

    К широко применяют при определении микрокомпонен-тов в объектах окружающей среды, минер, сырье, металлах и сплавах, в-вах высокой чистоты. Наиб, распространение для анализа концентратов получили такие методы, как фотометрия, атомно-эмиссионный, атомно-абсорбционный, рентгенофлуоресцентный и нейтронно-активационный анализ, инверсионная вольтамперометрия. Орг. микрокомпоненты удобно определять газовой и жидкостной хроматографией, хромато-масс-спектрометрией. Для К. газообразующих микроэлементов широко применяют высокотемпературную экстракцию. [c.462]

    Иногда ФА понимают более широко, как совокупность методов качеств, и количеств, анализа по ингенсивности ИК, видимого и УФ излучения, включающую атомно-абсорбцион-ный анализ, фотометрию пламени, т цпиметрию, нефелометрию, люминесцентный анализ, спектроскопию отражения и мол.-абсорбционный спектральный анализ. [c.172]

    Влияние физических свойств раствора на атомно-эмиссионное и атомно-абсорбционное определение натрия. В ряде исследований отмечается изменение физических свойств раствора при определении натрия в присутствии некоторых органических и неорганических кислот и органических растворителей [33, 248, 351, 409, 410, 453, 486—488, 497, 559, 713, 803, 910]. Влияние органических растворителей на результаты определения натрия методами пламенной фотометрии обусловлено многими причинами изменением эффективности распыления раствора и увеличением его количества в пламени, изменением диаметра частиц аэрозоля, повышением эффективности атомизации вещества в пламени за счет восстановительных свойств углерода органического растворителя в пламени и реакций хемилю-минесценции. [c.124]

    Автор выражает глубокую благодарность кандидату химических наук Е. Я. Нейману за помощь в написании раздела Электрохимические методы , кандидату технических наук М. П. Бурмистрову за просмотр и обсуждение раздела Спектральные методы и Л. В. Морейской за просмотр и обсуждение разделов Атомно-абсорбционная спектрофотометрия и Фотометрия пламени . Особенно глубоко автор признателен К. Г. Дми-триеву за большую помощь в подборе необходимой литературы, а также доктору химических наук Н. М. Кузьмину и кандидату химических наук В. И. Фадеевой за прочтение рукописи и ценные замечания. [c.6]

    Натрий. Определяют методом атомной абсорбционной спектро-фотометрии (т. 1, с. 50) прп длине волны 589 нм используют стандартный раствор хлорида натрия Р, предварительно высушенного до постоянной массы п растворенного в 1000 мл воды до содержания 508,4 мг Na l (0,2 мг Na в I мл) содержание натрия не более 1,0 мг/г. [c.180]

    Измерение интенсивности излучения спектральных линий определяемых элементов можно проводить на отечественных пламенных фотометрах, например типа ПФЛ-1, ПФМ, ПАЖ-1 или Р1ар1ю-4 (ГДР) и др., а поглощение резонансных линий — на атомно-абсорбционных спектрофотометрах, например типа Спектр-Ь и Сатурн (СССР), АА5-1 (ГДР) и др. В качестве регистрирующих систем могут использоваться вольтметры и потенциометры, снабженные цифровыми или печатающими устройствами. Точность методов пламенной фотометрии и атомной абсорбции в зависимости от концентра- [c.43]


Смотреть страницы где упоминается термин Фотометры атомно-абсорбционны: [c.222]    [c.6]    [c.23]    [c.5]    [c.49]    [c.49]    [c.28]    [c.368]    [c.133]    [c.7]    [c.172]    [c.332]    [c.471]   
аналитическая химия ртути (1974) -- [ c.127 , c.167 ]




ПОИСК





Смотрите так же термины и статьи:

Фотометрия

Фотометры



© 2025 chem21.info Реклама на сайте