Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Распыление эффективность

    Следовательно, с увеличением числа ступеней распыления эффективность каждой ступени падает. Это же подтверждается и лабораторными опытами [311. [c.640]

    Распыление. Эффективность распыления (разбрызгивания) обусловливается долей от общего объема раствора пробы, превращаемой в мелкие капельки, которые в конечном итоге могут достичь пламени. Процесс распыления зависит от таких параметров, как вязкость и поверхностное натяжение раствора пробы, скорость потока распыляющего газа, и от конструкции распылителя. Например, использование органических растворителей, которые уменьшают вязкость раствора пробы, часто способствует улучшению процесса распыления. Раствор, содержащий высокие концентрации пробы, имеет высокую вязкость, что приводит к уменьшению количества распыленной пробы и соответственно к сокращению числа свободных атомов в пламени. [c.681]


    Применение распыленной воды также не является достаточио эффективным средством тушения больших [c.262]

    Распыление масляной пленки на поверхности болотных вод является одним из методов борьбы с комарами и до некоторой степени практикуется [142—150]. Известно, что применяемые в садоводстве инсектицидные масла также действенно способствуют уничтожению складских насекомых красных паучков, клеш,ей, личинок моли, тлей и других вредных насекомых. Факторами, определяющими эффективность этих масел в уничтожении насекомых, являются их молекулярный вес и групповой химический состав. [c.568]

    Вначале антидетонационный эффект присадок объясняли воздействием распыленного металла. Однако вскоре было показано, что введение мелкодисперсных частиц металла, в частности свинца, непосредственно в камеру сгорания оказывает лишь незначительное антидетонационное действие. Кроме того, различные соединения одного и того же металла оказались разными по эффективности (в %)  [c.129]

    Пожарные подразделения располагают эффективными средствами тушения пожаров (порошки, воздушно-механическая пена различной кратности, распыленная вода и т. д.). [c.6]

    Исследования эффективности тепловой защиты оборудования и резервуаров со сжиженными газами свидетельствуют, что орошение распыленной водой с помощью стационарных установок яв-ляетсй наиболее надежной мерой защиты. Прочность резервуара в условиях пожара может сохранить такая система охлаждения, которая своевременно при заданных параметрах работы обеспечивает необходимый отвод тепла. [c.148]

    Однако имеющимся разработкам присущи два крупных не- достатка. Во-первых, нет единой системы алгоритмов и программ для решения задач оптимизации на всех уровнях объектов (от- i дельный аппарат, теплообменник, система теплообменников, совокупность теплообменников предприятия, отраслевой парк теплообменников, общегосударственный парк теплообменников), поэтому оптимизация аппаратуры, выполняемая при решении каждой отдельной задачи, осуществляется без учета результатов оптимизации, полученных при решении других задач. Во-вторых, применяемые в проектировании алгоритмы и программы несовместимы по критериям оптимальности, полноте и точности элементов теплового, гидравлического, конструктивного и экономического расчетов. Они имеют недостаточную область приложения V по процессам теплообмена, конструкциям аппаратов, схемам тока сред в аппаратах и теплообменниках и по ряду других признаков Если исходить из ориентировочной цифры Ю " частных алгоритмов, требуемых для оценки эффективности работы всех возможных, в том числе и перспективных, вариантов теплообменников, то нетрудно определить, что сейчас имеется таких алгоритмов в триллион раз меньше. Поэтому идти по пути накопления большого числа частных алгоритмов по меньшей мере бесперспективно и связано с распылением сил и большими расходами. [c.309]


    Печи для сжигания жидких отходов наиболее удобны в эксплуатации и требуют минимальных затрат рабочей силы. Основное требование к исходному сырью для такой печи — вязкость менее 2200 сСт. Иногда вместе с жидкими отходами в печах такого типа сжигают некоторые виды твердых отходов. С этой целью их нагревают до температуры плавления, перекачивают насосом и распыляют в горелках печи. Поскольку жидкие отходы сжигаются в основном в горелках, предназначенных для суспензий, полное и эффективное сгорание достигается в том случае, когда отходы равномерно распределены или распылены и перемешаны с кислородом. Отходы распыляют обычно механическим способом с помощью вращающихся колпачков, либо систем распыления под давлением, либо через газовые форсунки, использующие сжатый воздух или пар высокого давления. Для более равномерного распыления в горелочных соплах вязкость жидких отходов не должна превышать 165 сСт. Для достижения необходимой вязкости отходы нагревают, либо получают из них одно- или двухфазные эмульсии, либо растворяют в жидкости с низким показателем вязкости. Горелку устанавливают на одном конце футерованной огнеупором камеры сгорания, а отходящие газы из противоположного конца камеры выводят в систему очистки. [c.142]

    При массообмене между жидкостью и газом поверхность контакта фаз можно увеличить за счет измельчения массы жидкости. Чем меньше размер капель, тем больше удельная поверхность контакта. Для увеличения поверхности контакта разработано множество приспособлений. Во многих из них распыление жидкости достигается за счет скоростного напора газа, проходящего через контактные элементы. При этом газ проходит через жидкость не сплошным потоком, а в виде пузырьков, благодаря чему создается поверхность контакта. Количество пены, образующейся при прохождении газа через жидкость, ограничивается уносом жидкости с газовым потоком, что приводит к уменьшению эффективности контактного элемента. Сочетание скорости потока газа и размера капель жидкости должно быть таким, чтобы капли вновь возвращались в массу той жидкости, из которой они попали в поток газа. [c.126]

    Испытания при увлажнении охлаждающего воздуха носят специальный характер, но в большинстве случаев их включают в общий объем тепловых и аэродинамических испытаний. Чтобы определить эффективность впрыска воды в охлаждающий воздух, проводят сравнительные испытания АВО. Для этого первоначально аппарат испытывают при температуре воздуха ii, при которой достигается предельная температура продукта. Подают воду на увлажнение охлаждающего воздуха и через равные промежутки времени (3—5 мин) записывают параметры охлаждаемой (конденсируемой) среды. На установившемся режиме выполняют полный объем измерений всех параметров работы АВО с замером расхода воды на увлажнение и относительной влажности воздуха ф на выходе из АВО. Испытания проводят при различных режимах при измерении расхода воды, степени ее распыливания в потоке воздуха, изменении числа форсунок и направленности конуса распыления. Для проведения испытаний в условиях эксплуатации не всегда удается изменять расходы технологических сред и охлаждающего воздуха в требуемых пределах. В этом случае испытания проводят в два этапа. [c.61]

    Характерным недостатком в работе АВО является неэффективность системы увлажнения, при которой не происходит адиабатического снижения температуры охлаждающего воздуха из-за недостаточно тонкого распыливания и малого времени контакта распыленной воды в потоке воздуха. Увеличение степени распыла, достигаемое уменьшением диаметра форсунки, хотя и позволяет увеличить эффективность увлажнения, но приводит к быстрому засорению сечения форсунок и выходу их из строя. [c.80]

    Различие между тремя степенями вязкости проявляется в основном в условиях хранения и при транспортировке. Легкий мазут с максимальной вязкостью 65 сСт при 38°С обычно не требует подогрева при хранении и транспортировке по распределительным трубопроводам, за исключением очень холодных климатических условий. Средний мазут с максимальной вязкостью 162 сСт ири 38°С требует подогрева в условиях хранения, особенно в зимний период, иначе из него может выделиться твердый парафин или мазут затвердеет при любой температуре ниже точки застывания. По этой причине для обеспечения эффективного распыления мазута в форсунке его следует нагревать до 66°С. Вязкость самого тяжелого мазута, известного под названием бункерного топлива, может достигать 638 сСт при 50°С. Это значит, что температура хранения его должна быть около 40°С, а для удовлетворительного распыления топлива температура впрыскивания должна быть не менее 120°С. [c.84]

    Нагар, отлагаясь на стенках жаровых труб камер сгорания, нарушает аэродинамику потока и ухудшает эффективность сгорания топлива, приводит к местным перегревам, короблению и растрескиванию жаровых труб. Частицы нагара, уносимые газовым потоком, вызывают эрозию лопаток турбины. При отложении нагара на форсунках изменяется форма распыленной струи, снижается эффективность сгорания топлива, а иногда могут прогореть и камеры сгорания [52]. [c.121]


    Эффективность каталитического процесса определяют активностью катализатора и способом его применения. Твердые катализаторы применяют в неподвижном (фильтрующем) слое, во взвешенном (кипящем) слое, в виде распыленной взвеси в потоке газа или жидкости и в виде движущегося слоя катализатора. [c.9]

    В результате анализа работы промышленных распылительных сушилок установлено, что наиболее эффективными являются также аппараты, в которых достигается высокая дисперсность при распылении высушиваемого материала, быстрое и полное смешение материала с теплоносителем при высокой температуре последнего. Однако очень часто конструкции существующих сушилок, отличающихся крупными габаритами и занимающих большие производственные площади, не позволяют поднять температуру и скорость сушки до требуемых величин. Процессы сушки в них проводят при температурах газа, не превышающих 500-600 С, и скоростях потоков 0,3-0,5 м/с. Повышение температуры в процессе работы выше указанных пределов приводит к резкому снижению эксплуатационной работоспособности и надежности сушильных установок в целом. Для повышения эффективности промышленных распылительных сушилок, как правило, требуется коренное изменение конструкции и формы сушильных камер, аэродинамической структуры потоков в них и других параметров. [c.153]

    Однако в скоростных прямоточных сушилках резко уменьшается время пребывания капель в зоне сушки, и поэтому в основных участках камеры успевают испариться преимущественно наиболее мелкие фракции капель. Температура в зоне сушки при этом быстро понижается, а время сушки крупных капель увеличивается, что приводит к неравномерности процесса сушки. Подобную картину процесса наблюдали и мы при сушке катализаторной суспензии с подачей распыленной массы в высокоскоростную газовую струю. При этом было установлено, что эффективность работы скоростных прямоточных сушилок во многом зависит от таких параметров, как режим диспергирования материала сушки и аэродинамические условия процесса в сушильной камере, определяющих в основном время пребывания частиц материала в зоне сушки. [c.153]

    Желобчатые тарелки работают весьма эффективно, так как обеспечивают отличное распыление паров на многочисленные струйки, а следовательно, и хороший контакт между паровой и жидкой фазами. [c.110]

    Расход воды и напор, требуемые для работы дренчерных установок, определяют гидравлическим расчетом в зависимости от числа установленных дренчеров. Интенсивность подачи воды для помещений обычной пожарной опасности составляет 0,1 л/(с-м ), для помещений повышенной пожарной опасности (при количестве сгораемых материалов 200 кг/м и более) — 0,3 л/(с-м ). Быстродействие таких установок обеспечивается мгновенной подачей большого количества воды на очаг пожара в течение сравнительно короткого промежутка времени, а эффективность действия — использованием распыленной и мелко распыленной (туманообразной) воды. Для создания распыленных и туманообразных водяных струй применяют оросители специальных конструкций, работающие под высоким давлением — до 1 МИа. Специальные установки водяного тушения используют для пожарной защиты резервуаров, технологического оборудования, трубопроводов с воспламеняющимися жидкостями и газами. [c.230]

    В топочную камеру этой печи при помощи форсунки вводится распыленное топливо, а также необходимый для горения нагретый или холодный воздух. Высокая степень дисперсности топлива обеспечивает его интенсивное перемешивание с воздухом и более эффективное горение. [c.505]

    Электростатические, термические и гравитационные силы значительно изменяют эффективность фильтров и скрубберов в специфических условиях. Так, когда разбрызгивающие сопла в скруббере изолированы от камеры и находятся под напряжением 5 кВ, можно предположить значительное увеличение эффективности улавливания [463], хотя найдено, что небольшой заряд, приобретаемый частицами в процессе обычного распыления, практически не влияет на эффективность [404]. [c.298]

    Хотя на капельках жидкости во время распыления возникает некоторый электростатический заряд, он, как было показано, является слишком слабым, чтобы играть важную роль в улавливании частиц [256] за исключением тех случаев, когда капелькам жидкости специально сообщается заряд из внешнего источника [463]. Подобным же образом тепловое осаждение вряд ли может быть главной силой притяжения частиц, поскольку капельки жидкости летучи, а температурный перепад, необходимый для эффективного теплового осаждения, настолько велик, что эти капельки должны были бы испариться. В системах, где используются оросительные башни и скрубберы для обработки горячих дымовых газов, они выполняют комплексную функцию охлаждения и увлажнения газов, а также улавливания крупных частиц, прежде чем газы поступят в соответствующую установку для удаления мелких частиц. [c.393]

    Эффективность данной установки высока. Например, концентрация твердых частиц в уходящих газах электропечей была снижена от 5,5 до 0,45 г/м , что соответствует эффективности 99,1%. Хотя данный скруббер характеризуется низким уровнем потребления первичной энергии для очистки газов, для, повышения эффективности улавливания частиц необходимо обеспечивать тонкое распыление жидкости, что в свою очередь сопряжено с затратами энергии в виде сжатого воздуха или требует установки водяных насосов, поэтому чистая экономия энергии не так велика. Кроме того, следует учитывать, что уровень водопотребления в этой установке довольно высок. [c.429]

    Другое предложение Бумера [108] касалось использования акустического генератора вместе со скруббером Вентури типа S-F, что способствовало поверхностной кавитации в точке распыления жидкости и увеличению эффективности улавливания путем инерционного столкновения. [c.534]

    Жизненно важный элемент аэрозольного распылителя — клапан, который может оставаться открытым до тех пор, пока на него оказывают давление извне. Выбор конструкции клапана зависит от типа аэрозольного наполнителя. Он влияет на характер распыления, направление струи, размеры аэрозольных капель, а также на эффективность всей аэрозольной системы. [c.353]

    Иногда необходимо провести детальное исследование течения в пограничном слое. Только что описанный метод, использующий распыленный в воде порошкообразный алюминий, оказался эффективным для изучения поведения потока жидкости, обтекающего ребра в поперечном направлении (см. рис. 3.21). Анемометры с нагретой проволочкой доказали свою эффективность при исследовании тонкой структуры турбулентного потока, но с ними очень трудно работать, и потому они скорее могут быть использованы опытным экспериментатором, чем специалистами, проектирующими теплообменники. Для решения некоторых задач полезным, может оказаться введение красящего вещества. Следы раствора иода можно ввести в крахмальный раствор, что даст резко очерченный след, распространяющийся по потоку от места впрыска. Перемещение и скорость размытия окрашенного пятна позволяют судить о характере и интенсивности турбулентных токов в данной окрестности. Добавлением в раствор крахмала малого количества тиосульфата натрия, реагирующего с иодом, можно добиться обесцвечивания окрашенного пятна, что позволяет производить многократное впрыскивание без потери прозрачности массы жидкости. [c.322]

    Масло пропускают через грубый фильтр для отделения крупных твердых примесей и затем через тонкий фильтр с большой эффективностью П,, (a 615 см ) для отделения оставшихся твердых примесей. После этого масло направляют в делитель потока. Здесь отделяется 70-86% масла и возвращается в сборник загрязненного масла или же (при отсутствии жидких примесей) в сборник очищенного масла. Оставшаяся часть масла нагревается до температуры 60-80°С и в распыленном виде (размер частиц - 10 мкм) вводится в аппарат вакуумной разгонки, заполненный металлической сеткой, а масло стекает в бак с поплавковым регулятором, откуда поступает в сборник для очищенного масла. [c.188]

    Для факельных трубопроводов, в том числе для факельного ствола, имеющих ограниченные диаметры, впрыск ингибитора в защищаемое пространство в виде мелкодисперсной распыленной жидкой фазы или паров не представляет большого труда. В качестве ингибитора применяют жидкие вещества, имеющие большую плотность, низкую температуру испарения, наибольшую теплоту парообразования, малую вязкость и малый коэффициент поверхностного натяжения н др. Наиболее эффективным и химически активным ингибитором большинства углеводородо-воздушных пламен является тетрафтордибромэтан (фреон 114Вч). [c.226]

    Особенности самовоспламенения распыленных жидких топлив. В предыдущей главе (раздел 2.1) отмечалось, что в капле, движущейся в нагретом воздухе, протекают сложные физикохимические процессы, приводящие к интенсивному окислению молекул еще неиспаривщегося топлива. Благодаря этому после испарения капель в газовой смеси присутствуют как молекулы исходного углеводорода, так и продукты их окисления, преимущественно в виде гидропероксидов. Последние являются эффективными инициаторами самовоспламенения однородной газовой смеси. В результате самовоспламенение смеси, полученной при распылении жидкого горючего, происходит при более низких значениях Тв и т,-. [c.134]

    На рис. 3.16 приведены типичные результаты исследований самовоспламенения распыленных жидких топлив методом бомбы. Излом в зависимости Igx —IIT свидетельствует об изменении механизма самовоспламенения топлива в низко- и высокотемпературной областях. Это различие подтверждается результатами определений эффективной энергии активации процесса, которая для низкотемпературной ветви равна 146 кДж/моль (цетен) и 209 кДж/моль (бензол), а для высокотемпературной ветви равна 26,8 кДж/моль (бензол, цетен). [c.136]

    На жидком топливе горелка действует с паровым распылом. Топливо подается в цилиндрический канал в радиальном направлении через круглые отверстия. Одновременно в этот канал через щелевидные сопла паровой камеры поступает водяной пар. Двигаясь в перпендикулярном направлении к струям жидкого топлива и соударяясь с ними, пар производит тонкое распыление жидкости и образует парожидкостную эмульсию. Последняя, двигаясь с большой скоростью вблизи стенки канала, инжектирует необходимое для сгорания топлива количество атмосферного воздуха. При эффективном смешенпи его и эмульсии достигается хорошее горение факела. [c.57]

    Большая дальность полета капель при распылении центробежным распылителем требует большого диаметра распылительной камеры. Это особенно касается крупных капель тяжелого продукта. С целью уменьшения габаритных размеров распыли гельной камеры предложено замедлять движение капель, выходящих из центробежного распылителя, противотоком охлаждающего или высушивающего газа Эффективность замедления исследована теоретически. Для практики определена радиальная точка перемены направления траектории капель.  [c.178]

    В процессе работы в последнем по ходу газа аппарате, куда непрерывно подается вода, концентрация HNOз в растворе устанавливается в пределах 4-6%, что обеспечивает максимум эффективности абсорбции как паров НЙОз, так и оксидов азота. Максимум эффективности третьего по ходу газа абсорбера стал возможным благодаря новому принципу проектирования ступени, в которой предусмотрены распыление жидкости и фильтрация газового потока одновременно. Концентрация HNOз и оксидов азота после стадии абсорбции составляет 0.005-0.1 г/м . Отходящие газы после абсорберов газодувкой 2 нагнетаются в систему каталитической газоочистки, включающую малогабаритную волновую топку нагрева газов 3 и реактор каталитической газоочистки 4. В топке газы нагреваются до 300°С и поступают в реактор, где смешиваются с NHз и проходят через два слоя катализатора. Концентрация оксидов азота после реактора при очистке залповых газовых выбросов составляет 0.01-0.02% об., а при очистке технологических выбросов — в пределах 0.003-0.008% об. Концентрация НКОз в отходящих газах практически равна нулю. Горячие очищенные отходящие газы процесса каталитической очистки направляются в топку 7 и используются в процессе концентрирования 70%-ной Н2804. При этом относительно дорогой способ каталитической газоочистки становится в новой технологии не только самым надежным, но и самым дешевым, ибо энергетические затраты на его проведение полностью могут быть отнесены к последующему процессу концентрирования серной кислоты. [c.329]

    В Западной Европе широкое распространение получили распыливающие абсорберы [38]. Распыление гликоля производится в аппарате, диаметр которого близок к диаметру подводящего газопровода. Эффективность процесса определяется степенью распыления раствора, осуществляемого спе циальны-ми форсунками. Распыленная жидкость создает большую поверхность контакта фаз, а большие скорости газа (1-10 м/с) обеспечивают интенсивный массообмен и хорошее распределение частиц в потоке. Наилучший массообмен происходит при высоких относительных скоростях газа и капель, что достигается путем впрыска гликоля навстречу газовому потоку. Пределом дробления частиц жидкости является образование тумана, выделение частиц которого лимитируется существующими конструкциями сепараторов. [c.86]

    От химического состава топлива зг висят также эффективность и полнота сгорания топлива для воздушно-реактивных двигателей. При сгорании аренов, в особенности бициклических (нафталиновых) углеводородов, образуются сажа и нагар, которые откладываются на стенках жаровых труб кам(ф сгорания и распылителей форсунок. Нагарообразование нарушает аэродинамику потока газов в камере сгорания, изменяет форму распыления струи топлива и форму факела. В конечном итоге происходит коробление и прогар стенок жаровых труб. Кроме того, при использовании ароматизированного топлива в газах сгорания появляются раскаленные частички углерода, увеличивается интенсивность излучения пламени, вследствие чего перегреваются стенки камеры сгорания. Нагарообразование растет также при повышении температуры конца кипения и плотности топлива, при у1,еличенном содержании сернистых соединений и смол. [c.343]

    Вода и водяной пар. Вода — наиболее распространенное сред ство тушения пoжaJ)oв. Ее применяют в виде компактной струи под давлением и тонкораспыленной струи. При небольших очагах пожара сильные компактные струи сбивают пламя, однако следует помнить о возможности растекания горящей жидкости. Жидкие продукты, особенно не смешивающиеся с водой, эффективнее тушить распыленной струей воды. В этом случае происходит интенсивное парообразование и охлаждение горящей жидкости и пламени пузырьки пара в свою очередь образуют с жидкостью негорючую эмульсию, которая покрывает ее поверхность, и горение прекращается  [c.220]

    Широкое распространение антидетонационных присадок, в частности тетраэтилсвинца, сопровождалось исследованием механизма их действия. Вначале антиде-тонационный эффект присадок объясняли воздействием распыленного металла. Однако вскоре было показано, что введение мелкодисперсных частиц металла, в частности свинца, непосредственно в камеру сгорания оказывает лишь незначительное антидетонационное действие. Кроме того, различные соединения одного и того же металла оказались разными по эффективности (в %)  [c.9]

    В данной работе скрубберы будут классифицироваться, во-пер-вых, по способу образования капель, а во-вторых, по механизму улавливания капель. Так, например, в простых скрубберах с разбрызгивающим устройством капли формируются в результате распыления струй и улавливаются путем гравитационного притяжения, в то время как в центробежных скрубберах капли, также образовавшиеся в результате распыления струй, улавливаются центробежными силами. В других типах скрубберов используется струя газа, которая распыляет жидкость и приводит к образованию капель и брызг. Здесь не будут рассмотреТ1ы лишь уловители с орошением и увлажнением стенок, поскольку они служат, в первую очередь, для предотвращения уноса частиц, а не для улавливания частиц. Эти установки рассматриваются исходя из характеристик механизма, служащего для улавливания частиц. Например, орошаемые циклоны эффективнее обычных циклонов. [c.394]

    Для снижения потерь давления, наблюдаемого в скрубберах с трубами Вентури высокой эффективности разработана конструкция установки Соливор , в которой основное внимание уделено конденсации на поверхности частиц, выступающих в роли капелек (рис. 1Х-33,а). Пылевидный материал поступает в верхнюю часть камеры, где происходит его насыщение жидкостью, распыляемой до мельчайших частиц, здесь же осаждаются крупные частицы Затем насыщенные газы поступают в секцию трубы Вентури, где при увеличении скорости снижается давление и происходит дальнейшее испарение капель. Далее скорость газов снижается, а дав-ление снова возрастает, в результате чего происходит конденсация влаги на поверхности частиц, частицы агломерируются и осаждаются при впрыске жидкости, распыленной до капель крупного размера. В отдельной секции перепад давления составляет всего лишь 250 Па, в то время как для четырехступенчатой установки перепад давления менее 1500 Па. [c.428]


Смотреть страницы где упоминается термин Распыление эффективность: [c.627]    [c.650]    [c.227]    [c.138]    [c.146]    [c.317]    [c.269]    [c.344]    [c.54]    [c.9]    [c.430]    [c.299]   
Физико-химические основы производства радиоэлектронной аппаратуры (1979) -- [ c.150 ]




ПОИСК





Смотрите так же термины и статьи:

Распыление



© 2025 chem21.info Реклама на сайте