Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Определение сталях и железных сплавах

    Важное значение для разделения ряда элементов имеет электролитическое осаждение на ртутном катоде, причем осаждение облегчается образованием амальгам. Так, например, для определения примеси алюминия в железных сплавах железо и многие другие металлы осаждают из сернокислого раствора на ртутном катоде, причем алюминий остается в растворе. Наконец, можно указать на применение анодного растворения металлов. Так, например, для определения неметаллических включений в стали и различных цветных сплавах поступают следующим образом. Образец металла опускают в раствор соответствующего электролита и включают ток, причем исследуемый металл является анодом. Во время электролиза металл переходит в раствор, а неметаллические примеси остаются в виде осадка. Этот метод имеет большое значение для фазового анализа металлов. [c.190]


    Ниже перечислены важнейшие методы определения кобальта в сталях и сплавах на железной основе. [c.186]

    Хром увеличивает химическое сопротивление железных сплавов к газовой коррозии. Скачкообразное повышение устойчивости хромистых сталей от содержания в них хрома обнаружено и при определении их жаростойкости (рис. 7.9). [c.191]

    Метод электролитического отделения одних металлов от других нашел широкое применение в техническом анализе, особенно в анализе железа и железных сплавов. Проводя электролиз сернокислого раствора стали на ртутном катоде, можно отделить л елезо от таких компонентов стали, как алюминий, титан, ванадий и некоторые другие, быстрому и точному определению которых мешает железо. Указанные компоненты остаются в растворе, а железо переходит в амальгаму ртутного катода. Это разделение значительно облегчает дальнейший ход анализа. [c.314]

    Железные сплавы, стали и чугуны являются основными машиностроительными материалами. По содержанию железа в смазочном масле судят об износе механизма в целом. Концентрации железа, определенные в работавших маслах различных автотракторных двигателей, приведены на рис. 89. В отложениях масляных фильтров содержится 0,1 — [c.215]

    Дымов А. М. и Володина О. А. Фотоколориметрический метод в применении к анализу железных сплавов. [Сообщ.] 2. Определение никеля в стали. Зав. лаб., 1946, 12, № 6, с. 534—542. Библ. 24 назв. 3817 [c.154]

    Дымов А. М. и Володина О, А. Фотоколориметрический метод в применении к анализу железных сплавов. Определение кобальта в стали. Зав. лаб., 1947, 13, № 2, с. 137— 144. Библ. 73 назв, 3818 [c.154]

    Свентицкий Н. С. Спектральное определение некоторых металлоидов. [Определение фосфора в сталях. Определение углерода в железных сплавах. Доклад и изложение прений на Всес. конференции по спект 5о-скопии. Ленинград. Декабрь 1947 г.]. Изв. АН СССР. Серия физ., 1947, 11, № 3, с. 319—325. Библ. 11 назв. 6488 [c.211]

    Эти стали, часто называемые нержавеющими, стойки далеко не во всех средах, не при всех возможных концентрациях и температурных условиях. Для определенных условий разработаны специальные составы сталей. Этим именно объясняется, что в настоящее время разработано и существует под различными марками множество аналогичных железных сплавов. Эти стали рассматриваются как коррозионностойкие, если потери от коррозии составляют до 0,1 м -ч), т. е. 2,4 г м сутки). Всегда следует иметь данные по коррозионной стойкости, так как термин нержавеющий носит общий характер и не исключает растворения металла, хотя и незначительного. Перед применением коррозионностойких сталей рекомендуется исключать испытания, в ходе которых может появиться местная коррозия, язвы или межкристаллитная коррозия. [c.152]


    Яковлев П. Я. Разработка фторидного (криолитового) метода определения алюминия в сталях и сплавах на никелевой и железной основе. [Данные для сплава А1 — Nb].— Автореферат дисс. на соискание ученой степени канд. хим. наук. М., 1951, 6 с. (АН СССР. Ин-т общ. и неорган. хим. им. [c.294]

    Методы определения малых количеств олова, цинка, свинца и висмута с применением анионитов являются универсальными и могут быть использованы при анализе цветных металлов и их сплавов, сырых материалов, простых и легированных сталей, жаропрочных сплавов на никелевой, железной, кобальтовой, хромовой основах, а методы определения малых количеств железа, меди и кобальта, а также молибдена с применением анионита — при анализе жаропрочных сплавов на никелевой основе и ряда чистых металлов. [c.288]

    Иодидный метод применяется для определения ЗЬ в различных материалах, в том числе в алюминии и его сплавах и солях [843, 1294], бронзах [139, 340], ванадате натрия [1294], галлии и его окислах [1294], германии [500], железе [1294], чугуне [22, 951, 1185, 1477], нелегированных [1431] и легированных сталях [918], ферросплавах [690], железных рудах [735, 1277], золоте [735, 1682] и его сплавах [1043], кобальте, магнии и марганце и их хлоридах [c.42]

    Прямое определение Sb в сочетании с рядом других элементов производится в самых разнообразных материалах, в том числе в алюминии [54, 55, 1134, бериллии и его соединениях [305, 1297], боре [778, 11171 и фосфиде бора [26], ванадии и его окислах [234, 491, 1117], висмуте [809, 909, 1134], вольфраме и его соединениях [195, 739, 795, 1265], вольфрамовых рудах [1480], германии и его соединениях [559, 634, 905], горных породах [386, 730, 1182, 1240, 1336, 1443, 1599], графите и углероде [235, 397, 612], жаропрочных и тугоплавких сплавах [176, 177, 379, 1278, 1593], железе [425, 1134, 14411, железных рудах и минералах [198, 386, 636, 971, 1336], сталях [176, 546, 1278, 1441, 1593] и чугуне [61, 274, 546, 1250], золоте [404, 754, 909, 1095] и его сплавах [196, 389,390, 1167], индии [1168, 1308] и сплавах на его основе [814, 815, 1267], иттрии и его окислах [234, 272], алюмоиттриевом гранате [82], кадмии [598, 599, 1134] и кадмиевых сплавах [819], кобальте [60, 153, 1134], кремнии [252, 1619], кварце [154], карбиде кремния 109, 110, 288, 789, 790, 1353], кремниево-медных сплавах 594], силикатах [1586], технических стеклах [612, 1579], меди 129, 482, 964, 997, 1176, 1599, 1609, 1645, 1654], медных сплавах 96, 482, 1048, 1188, 1457,1463, 1566], окиси меди [199], продуктах медеплавильного производства [3601 и медных электролитах [1298, 1600], молибдене и его соединениях [104, 237, 308, 795, 1325, 1347, 1443], мышьяке [472, 1134], никеле и никелевых сплавах [486], ниобии и его окислах [49, 972], олове [582, 744, 782, 812, 900, 1684] и его сплавах [1210, 1494, 1495], полупроводниковых материалах [668, 678, 806, 1298, 16841, припоях [210, 1101], свинце [481, 534, 908, 1154, 1155,1193, 1543,1655], свинцовых сплавах [126, 871], рудах [53, 667, 806, 1143] и пылях [811], РЗЭ и их окислах [234, 353], селене [154, 155, 499, 747, 818, 1134], селениде ртути [715], сере [189, 1134], серебре [388, 390, 391, 909, 1598], хло- иде серебра [1362], стеклоуглероде [397], сульфидных рудах 638], тантале [237], теллуре [156, 591, 592, 1134, 1613], теллуровом баббите [1656] и теллуриде свинца [342], типографских сплавах [323], титане и двуокиси титана [288, 306, 1262], тории и его окислах [272], уране [1447], окислах урана [878, 1182, 1240] и урановых рудах [1443], ферросплавах [792, 793], фосфоритах [879], хроме [555, 729, 792] и его окислах [54, 55, 571], цинке [976] и цинковых рудах и минералах [1142], цирконии [679] и двуокиси циркония [1368], производственных растворах [205, 882, 1290, 1323, 1324, 1483], сточных и природных водах [429], азотной, серной, соляной, уксусной, фтористоводородной и бромистоводородной кислотах [111, 121, 407, 552, 574, 10081, воздушной пыли [121. [c.81]

    Каждому материалу подставного электрода соответствует своя таблица оценок интенсивностей. Таблицы пригодны только для анализа образцов, близких к эталонам по общему составу и физическим свойствам. Например, аналитические признаки для анализа сталей, установленные с применением железного электрода, не действительны, когда пользуются медным электродом признаки для определения легирующих элементов в стали не подходят для анализа цветных сплавов на те же элементы таблицей,. оставлеН ной по спектрам массивных эталонов, как правило, нельзя пользоваться для анализа тонкого листового материала мелких деталей. [c.230]

    Сталь получают путем передела белого (передельного) чугуна с добавлением скрапа, представляющего собой металлические отходы (стальной и чугунный лом, стружка, опилки, обрезки и др.), и железной руды. Сущность различных процессов одинакова и заключается в уменьщении (путем окисления) содержания углерода, кремния и марганца в сплаве до определенных величин, а также возможно более полном удалении вредных примесей — серы и фосфора. Все эти элементы (кроме серы, присутствующей в виде FeS) превращаются в окислы, которые удаляются в виде газа (СО) или после взаимодействия с флюсами — в виде щлака. Таким образом, в противоположность доменному процессу, где преобладают реакции восстановления окислов, здесь, наоборот, протекают реакции окисления. В качестве окислителей используются кислород и окислы железа, а получают сталь в различных сталеплавильных устройствах периодическим способом (ввиду высоких требований, предъявляемых к ее качеству). Один цикл операций называется плавкой. [c.188]


    Метод с использованием комплексона III применяют для определения хрома в бронзе [90], стали и алюминиевых сплавах [88], железных рудах [91, 92], хромовых рудах и керамических изделиях [93, 94]. [c.455]

    Метиловый фиолетовый. Этот краситель, также принадлежащий к группе трифенилметановых, образует с Sb lg ионный ассоциат, экстрагирующийся органическими растворителями. Чувствительность экстракционно-фотометрического определения Sb с его применением ниже, чем с применением бриллиантового зеленого и кристаллического фиолетового при использовании бензола е = 5,4-10 при Яшах = 608 нм (2 Л/HG1) для H lg е = = 8,1-10, Ятах = 590 нм (4 М НС1) [327]. Несмотря на указанный недостаток, метиловый фиолетовый довольно часто используется для определения Sb в различных материалах. С его применением определяют Sb в алюминии [254], жаропрочных сплавах [497], железе, чугуне, сталях, железных рудах и ферросплавах [84, 444, 975, 1406], кадмии [456], меди и ее сплавах [93, 341, 359, 489, 490], молибдене и ферромолибдене [401, 645, 655], никеле и его сплавах [502], оловянных рудах и продуктах их переработки [596], припоях [277], рении [645], свинце [1105, 1106], таллии [320], титане [498], хроме и его сплавах [502, 545], цинке, цинковых сплавах, злектролитах и растворах цинкового производства [332, 456, 700], тонких напыленных слоях стибнита [63]. [c.49]

    Кобальт в виде роданида экстрагируют АА после экстракционного отделения мешающих элементов этим же экстрагентом. Содержание кобальта определяют фотометрированием экстракта. Метод применен для определения кобальта в сталях [156]. при кипячении дает с АА комплексное соединение, которое затем экстрагируется смесью (1 1)АА и хлороформа. Содержание хрома определяют фотометрированием полученного экстракта. Метод применен для определения хрома в сталях и сплавах на железной основе [157]. Уран в виде ацетилацетоната практически полностью экстрагируется бутилацетатом нри pH 6—7. Комплекс в экстракте находится в виде продукта присоединения и02(СбН702)г СбНвОг. МаксЕшум светопоглощения экстракта находится нри 365 ммк. На основе этих данных разработана методика экстракционно-фотометрического определения урана в присутствии других металлов [158]. [c.242]

    Малинина Р. Д., Птушкина Е. В. Определение алюминия некомпенсационным потенциометрическим методом в сложнолегированных сталях и сплавах на железной основе.— Сб. тр. Центр, н.-и. ин-та черной металлургии, 1960, вып. 19, 51—53. РЖХим, 1961, 20Д73. [c.187]

    В 1926 г. Разумников [9], основываясь на реакции Миссона, разработал метод определения ванадия в сплавах. Реактивами для образования желтого комплекса в данном методе служат фосфорная кислота и молибдат аммония. Позднее на этой основе разработаны способы определения ванадия в железной руде [10], в инструментальной стали [11]. [c.88]

    Дымов А. М., Володина О. А. Фогоколоримеггрический метод в применении к анализу железных сплавов. Определение никеля в стали. Зав. лаб. 12, 534 (1946). [c.544]

    Диантипирилметан взаимодействует с титано.м (IV) в солянокислых растворах с образованием окрашенных соединений и применяется для его фотометрического определения в различных сплавах (см. стр. 141). Этот реагент принадлежит к числу наиболее селективных и выдокочувствительных реагентов на титан. Он применяется для определения титана в ванадии и хлорокиси ванадия, в ниобии, в молибдене, алюминиевых и магниевых сплавах, сталях, жаропрочных сплавах на никелевой и железной основах. [c.135]

    Электрохимические выпрямители. Алюминий, тантал и некоторые другие металлы обладают свойствами вентиля, если их поместить в определенные раство-рьг. При работе выпрямителя на его поверхности образуется пленка. Пленка проницаема для водородных катионов и непроницаема для анионов, исключая анионы, разрушающие пленку. Ток может проходить только в направлении на электрод вентиля, в обратном направлении, если пленка не пробита высоким напряжением, ток не проходит. В дополнение к электроду вентиля каждый элемент должен иметь второй электрод, служащий анодом. Он должен бьить рассчитан на работу в высококоррозийной среде и пропускать ток в любом направлении. Для этой цели обычно применяют свинец, уголь, железо, хромистую сталь и кремниево-железные сплавы. Танталовые выпрямители, применяемые в устройствах железнодорожной сигнализации, содержат катод из металлического тантала и анод из свинца или свинцовых сплавов, помещенные в раствор серной кислоты с небольшой добавкой сульфата железа. Удельный вес электролита около 1,250. [c.307]

    Железные сплавы в почвенных условиях обычно применяются, после горячей прокатки, протяжки (трубы, профили) или после отливки (чугунные детали и трубы). Применяемая механическая очистка предназначенных к укладке в землю труб снимает обычно с трубы посторонние загрязнения или неплотно приставшую окалину. Поэтому эксплуатируемые в почвенных условиях стальные конструкции имеют на своей поверхности в большей или меньшей степени сохранившуюся высокотемпературную окалину. Указания о вредном влиянии несплошной окалины на коррозию конструкции в почве не столь определенны и однозначны, как, например, в ошношении карровии стали в морокой воде. [c.151]

    Ф. М. Шемякин, И. П. Харламов, Э. С. Мицеловский разработали метод определения молибдена в железохромомолибденовых сплавах на сульфоугле. Шемякин и Харламов провели разделение ванадия, железа и молибдена на окиси алюминия и разработали метод хроматографического определения молибдена в сплавах на железной, кобальтовой и никелевой основах при помощи сульфоугля К, а также определение молибдена в сталях, содержащих ванадий. В. Ф. Торопова и Г. С. Срубин-ская при амперометричеоком определении молибдена в сплавах использовали вофатит П. Железо связывали фторидом натрия. [c.105]

    Ляо Чжэнь Цзянь установил возможность фотометрического определения алюминия с помощью эриохром-цианина R после ионообменного отделения алюминия от мешающих компонентов с использованием цеолита ФФ в С1-форме. Разработана методика определения алюминия в легированных сталях, в сплавах на медной основе и в железных рудах. [c.177]

    Изучение трех слоев окалины на железных сплавах оказалось весьма поучительным. Если бы окисление железа было обусловлено исключительно диффузией кислорода внутрь через слой окисла, то отношение второго элемента к железу должно было быть в окалине почти такое же, как и в первоначальном металле. Например, железо с содержанием никеля, хрома или вольфрама должно было бы показать значительные количества этих элементов в наружном и среднем слоях. Однако в действительности точные анализы Пфейля показали, что почти все добавки сплава накапливаются в самом нижнем слое, который обычно содержит даже большую концентрацию добавочных элементов сплава, чем исходная сталь. Пфейль высказал мнение о том, что соединение железа и кислорода зависит не просто от диффузии кислорода внутрь, но также и от диффузии избыточного железа наружу. В одном из опытов Пфейля кусок железа (не сплав) был до окисления окрашен зеленой окисью хрома, размешанной на воде. После удаления окалины было обнаружено, что окись хрома с поверхности перешла в средний или нижний слой. Такие опыты определенно подтвердили реальность диффузии наружу. [c.139]

    Спектрофотометрические методы позволяют быстро и с высокой чувствительностью определять 8Ь в железе, сталях, чугуне, железных рудах и сплавах на основе железа. В ряде случаев фотометрическими методами можно определять 8Ь непосредственно в растворе, полученном после растворения пробы. Так определяют 8Ь в сером чугуне [1185], нелегированных [1431] и легированных [918] сталях методом, основанным на образовании и измерении окраски 8Ь14. Лучшим вариантом этого метода, пригодным для определения 8Ь 0,001—0,025% (5 = 0-02-н 0,07) в железе, чугуне и сталях, является вариант, описанный в работе [918]. [c.130]

    Фотометрические методы определения мышьяка в виде мышья-ковомолибдеповой сини находят широкое применение. Они используются для определения мышьяка в его соединениях [529], железе, чугуне и стали [48, 540, 666, 698, 773, 785, 790, 885, 917, 943, 949, 952, 996, 1131-1133, 1147], ферросплавах [217, 702, 703, 1203], меди и медных сплавах [158, 195, 197, 216, 515, 562, 815, 886, 952, 1043, 1133, 1209, 1210], рудах и продуктах медного и свинцово-цинкового производства [21, 81], железных рудах [652, 822, 949, 1108], свинце [158, 264, 627, 695, 886, 926, 952, 990, 1133], серебре и его сплавах [1070], Вольфраме и его рудах [1203], олове [307, 585, 661, 1208], сурьме [91, 197, 198, 264, 284, 837, 886, 894, 952, 956], висмуте [265, 764], цинке [158, 627, 926, 952], ниобии и ванадии [284], галлии [284, 2881, индии [284, 289, 430], таллии [284, 287], кремпии [284, 872], германии ]б99, 700, 872], селене [637, 1016, ИЗО], теллуре [758], хроме и его окислах [198, 216], алюминии [144], кадмии [158], олове [886], молибдене и его окислах [459], никеле [402, 562], боре [893], уране [661, 760, 849, 928], минералах [415, 869, 994], пиритах и пиритных огарках [302, 491], фосфорной [940, 941], азотной [892], серной [939] и соляной [197, 452] кислотах, природных водах [785, 942, 993], дистиллированной воде [452], фосфатах [942] и фосфорсодержащих продуктах [980, 1091], силикатах и силикатных породах [869, 942, 964, [c.61]

    Атомно-абсорбционный метод использован для определения магния в чугуне [286, 519, 538], в стали [1202], в алюминиевых ]895] и цинковых [244, 271] сплавах, в металлическом уране [393, 804], в высокочистых металлах — Си, Zn, d, In, Pb, Ni, Pd [272], в железной руде [480], в шлаках [519, 894], сварочных флюсах [284], цементе, известняке и магнезите [894], в силикатных материалах [271, 749, 775, 889, 897, 1093, 1095, 1237], стекле [342], угле [983, 1000, 1198], в почве [281а, 592, 648, 894, 909, 983, 1000, [c.192]

    Описанные выше реагенты применяют для определения ванадия в рудах [33, 855], сталях [33, 389, 455], феррованадии [8551, глауконите (0,013%) [464], железе [899], медных рудах [703], жаропрочных сплавах на железной (0,17—0,71%) и никелевой (0,06—0,49%) основах [364], Т1С14 [335, 3531, титане (п-10 %) [352], урановых > сплавах (0,025—0,1%) [288], нефти [883, 912]. [c.123]

    Мешают определению (без экстракции комплексной кислоты) следующие ионы кремний в больших концентрациях, железо(III) в присутствии хлорида или сульфата, восстановители, хром (VI), мышьяк(V) и цитрат. Висмут(III), торий(IV), хлорид н фторид влияют на развитие окраски. Кремний можно удалить при кипячении раствора с концентрированной H IO4. Железо(III) можно связать в комплекс с фторидом, избыток которого удаляют введением борной кислоты. Борную кислоту можно использовать и для связывания фторидов, присутствующих в исходном анализируемом растворе. С использованием экстракции комплексной гетерополикислоты был разработан метод определения фосфора. Метод был применен для анализа практически всех фосфорсодержащих материалов стали [139, 140J, железных руд [141], алюминиевых, медных и никелевых сплавов с белыми металлами [142], воды [143, 144] и удобрений [145—147]. Работы по анализу удобрений [145—147] посвящены автоматизации очень точного метода определения фосфора с применением автоматических анализаторов. В анализаторы был заложен метод прямого измерения светопоглощения, а не дифференциальный вариант, который обычно используют для повышения точности определения. Полученные результаты позволяют заключить, что абсолютная ошибка измерения оптической плотности в интервале О—1,2 единицы не выше ошибки самого измерительного прибора (0,001 единицы поглощения). Следует отметить, что описанный метод по точности превосходит метод с применением молибдофосфата хинолина и, кро.ме того, обладает еще одним преимуществом — простотой выполнения определения. В биохимии метод применяли для определения фосфата в присутствии неустойчивых органических фосфатов [148] и неорганического фосфата в аденозинтрифосфате [149]. Метод был использован для анализа фосфатных горных пород [150]. В органическом микроанализе метод применяют после сожжения органических соединений в колбе с кислородом [151, 131]. [c.461]

    Для определения кремния значительно чащ применяют синий кремнемолибденовый комплекс. В виде этого комплекса определяют кремний в чистом теллуре [174], в воде бойлеров и накипи [175], в пробах с высоким содержанием кремния [176], огнеупорных материалах [177], глиноземе [178,] воде [179, 180], растворах нитрата уранила [181], ферросиликохроме [182], плавиковом шпате и флюо-ритовом концентрате [183], стекле [184], неметаллических включениях [185], окиси бора [186], техническом перборате [187], железных рудах и других продуктах металлургического производства [188], химических реактивах [189], двуокиси урана [190], сталях, алюминии, цирконии, титановой губке, сплавах кремния и никеля, урана и кремния, бифториде калия [191], хроматах кальция и магния [192], минеральном сырье [193] и в других объектах [194—197]. [c.128]


Смотреть страницы где упоминается термин Определение сталях и железных сплавах: [c.86]    [c.108]    [c.6]    [c.79]    [c.40]    [c.126]    [c.445]    [c.171]    [c.126]   
Аналитическая химия кобальта (1965) -- [ c.196 ]




ПОИСК





Смотрите так же термины и статьи:

Бор, определение в железных сплавах

Сталь железных руд



© 2025 chem21.info Реклама на сайте