Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Разделение металлов в присутствии ванадия

    Если разделяются только два сорта ионов или желательно разделить растворенные вещества на две группы, то в ряде случаев нет необходимости прибегать к методу элюирования. Вместо этого можно воспользоваться более простым методом селективного поглощения. Для применения этого метода необходимо, чтобы ионы одного из сортов (или одной группы) можно было перевести в непоглощаемое состояние, нанример, превратить в комплексы, не способные к поглощению и, следовательно, не удерживаемые ионитом. Впервые этот метод был применен Самуэльсоном [97 ] для определения щелочных металлов в присутствии ванадия ванадий переводили в форму ванадата и затем отделяли от щелочных металлов с помощью катионита (табл. 10. 2). Для многих разделений этого типа целесообразно использовать катионит в КН4-форме. Другой пример применения этого метода, также основанный на изменении знака заряда одного [c.208]


    Ход разделения металлов в присутствии ванадия и вольфрама. [c.223]

    С медью в нейтральном, кислом и щелочном растворах образует желто-коричневый осадок или коллоидный раствор бурого цвета. Образует устойчивые внутрикомплексные малорастворимые соединения со многими элементами. Диэтилдитиокарбаминаты металлов извлекаются органическими растворителями с образованием окрашенных в разные цвета экстрактов. Применяют для отделения, концентрирования, а также фотометрического определения следов элементов (меди, висмута, кобальта, никеля, хрома, ванадия и др.). В присутствии маскирующих веществ (тар-трата, цианида, комплексона П1 и др.) при различных значениях pH диэтилдитиокарбаминаты металлов обладают различной устойчивостью, что используется для их разделения. [c.151]

    Купферон реагирует со многими катионами, образуя труднорастворимые комплексы. Растворимость купферона-тов металлов зависит от кислотности растворов регулируя кислотность, можно провести разделение катионов. Например, в сильнокислом растворе (5—10 %-ной соляной или серной) купфероном осаждаются железо, галлий, гафний, ниобий, палладий, полоний, олово, тантал и титан частично осаждаются висмут, молибден, сурьма, вольфрам. В слабокислом растворе осаждаются висмут, медь, ртуть, молибден, олово, торий, вольфрам. В нейтральной среде осаждаются (в присутствии ацетатного буфера) серебро, алюминий, бериллий, кобальт, хром, марганец, никель, свинец, РЗЭ, таллий и цинк. Купферон дает возможность отделить железо, титан, ванадий и цирконий от алюминия, кобальта, меди, арсенита и фосфата. Его часто используют для отделения мешающих катионов, например железа при определении алюминия, а также железа и ванадия при определении фосфора в феррованадии. [c.165]

    Обработка фильтрата. Фильтрат, полученный после осаждения по п. а , может быть сразу применен для определения кальция и магния. Фильтрат, полеченный после обработки по п. б , может содержать некоторые металлы, которые должны быть предварительно выделены. Для этого нужно сначала разрушить тартраты. Раствор выпаривают в большой платиновой чашке с 10—12 мл серной кислоты и осторожно нагревают до тех пор, пока не начнется ясное обугливание. Слегка -охлаждают, покрывают часовым стеклом и осторожно приливают 5 мл азотной кислоты (лучше дымящей) когда бурная реакция прекратится, постепенно нагревают до гех пор, пока органические вещества полностью не окислятся обработку азотной кислотой, если нужно, повторяют Чашку охлаждают, растворяют остаток в воде и прибавляют раствор аммиака, чтобы осадить алюминий, титан, цирконий, бериллий, ниобий, тантал и уран, а также фосфор и ванадий, если количество этих двух элементов не превышает того, которое может соединиться с основаниями в виде фосфатов и ванадатов. В присутствии алюминия избытка аммиака надо избегать. Если фосфор и ванадий присутствуют в количестве большем, чем то, какое может быть связано алюминием, титаном и др., то в осадке можно ожидать присутствия щелочноземельных металлов. После растворения осадка в горячей разбавленной (1 1) соляной кислоте дальнейшее разделение идет обычным путем. [c.92]


    Если едкий натр применяют вместе с карбонатом натрия, то в осадок переходят также и щелочноземельные металлы. Полнота осаждения титана зависит от присутствия железа. Хром осаждается вполне удовлетворительно В растворах, содержащих магний, никель (П1 или II), отделение алюминия не поЛно. Если количество никеля не/превышает содержание алюминия, а железа (III) по крайней мере в 5 раз больше, чем никеля, то захват алюминия осадком нич тожен В присутствии карбонатов или ванадия уран осаждается частично или совсем не осаждается, а осадок, полученный в присутствии ванадия, всегда им загрязнен. Нечеткость разделения в отношении крома, ванадия и урана легко устраняется путем осаждения в присутствии окислителей, например перекиси натрия или пергидроля, с добавлением карбоната натрия, если присутствует уран. При такой обработке упомянутые три элемента переходят в фильтрат. [c.110]

    Феррованадий содержит от 35 до 80% V. Его получают восстановлением окислов ванадия углеродом, кремнием или алюминием. Основным сырьем для получения феррованадия служит пятиокись ванадия, получаемая из концентратов ванадиевых руд или из железных руд с повышенным содержанием ванадия. Ванадийсодержащие руды или концентраты вначале плавят в доменной нечи для получения чугуна с повышенным содержанием ванадия (до 0,4—0,5% V). Затем этот чугун перерабатывают в сталеплавильных печах (мартен, конвертор) с окислением ванадия и обогащением получаемого при этом шлака окислами ванадия. Такие шлаки подвергают окислительному обжигу в присутствии солей щелочных металлов при этом образуются хорошо растворимые соединения ванадия — ванадаты натрия и калия. После выщелачивания и разделения растворимых соединений ванадия осаждается продукт, в к-ром содержится 80—95% Пятиокись ванадия [c.17]

    Феррованадий содержит от 35 до 80% V. Его получают восстановлением окислов ванадия углеродом, кремнием или алюминием. Основным сырьем для получения феррованадия служит пятиокись ванадия, получаемая из концентратов ванадиевых руд или из железных руд с повышепным содер>ка-пием ванадия. Ванадийсодержащие руды или концентраты вначале плавят в доменной печи для получения чугуна с повышенным содержанием ванадия (до 0,4 0,5% V). Затем этот чугун перерабатывают в сталеплавильных печах (мартен, конвертор) с окислением ванадия и обогащением получаемого нри этом шлака окислами ванадия. Такие шлаки подвергают окислительному обжигу в присутствии солей щелочных металлов при этом образуются хорошо растворимые соединения ванадия — ванадаты патрия и калия. После выщелачивания и разделения растворимых соединений ванадия осаждается продукт, в к-ром содержится 80—95% . 05. Пятиокись ванадии в виде предварительно просушенных и сплавленных слитков используется для получения феррованадия в дуговых печах закрытого типа или внепечным металлотермич. способом. Основные реакции восстановления окислов ванадия углеродом или алюминием  [c.17]

    Купфероновый метод вполне надежен для определения железа, титана, циркония, ванадия и в отдельных случаях — олова, ниобия, тантала, урана (IV), галлия и, вероятно, гафния. Этим методом можно определять также медь и торий, но осаждать их следует из слабокислых растворов результаты определения этих элементов менее удовлетворительны, чем при обычно принятых методах. Из числа элементов, мешающих применению кунферонового метода, следует упомянуть таллий (III), сурьму (III), палладий, ниобий, тантал, молибден, висмут, церий, торий, вольфрам и большие количества кремния, фосфора, щелочноземельных и щелочных металлов Торий и церий частично выделяются купфероном даже из растворов, содержащих 40% (по объему) серной кислоты. Уран (VI) не влияет на осаждение купфероном. Число элементов, мешающих определению купфероном, может показаться очень значительным, но нужно принять во внимание, что часть из них относится к группе сероводорода и может быть легко отделена перед осаждением купфероном, а некоторые элементы встречаются редко. Здесь следует указать на представляющие интерес разделения, которые можно осуществить этим методом, а именно 1) отделение железа, титана, циркония, галлия и ванадия при анализе чистых алюминия, никеля, цинка и т. п. 2) отделение осаждающихся купфероном элементов от алюминия, хрома, магния и фосфора при анализе различных руд и горных пород 3) отделение ванадия (V) от урана (VI), разделение урана (IV) и урана (VI) и отделение ванадия от фосфора. Осажденяе купфероном может быть осуществлено в присутствии винной кислоты, что дает возможность предварительно отделять железо в виде сульфида. Для этого в раствор вводят достаточное количество винной кислоты, чтобы он оставался прозрачным нри последующем добавлении аммиака. В кислом растворе восстанавливают железо сероводородом и затем подщелачивают аммиаком. Выделившийся осадок сульфида железа отфильтровывают, как описано нри осаждении сульфидом аммония (стр. 115), фильтрат подкисляют серной кислотой, удаляют сероводород кипячением и после этого проводят осаждение купфероном. [c.144]


    Удаление металлических примесей (ванадия, никеля и железа) из нефти. Как уже указывалось, некоторые металлы, содержащиеся в нефти, присутствуют в виде комплексных соединений-с порфиринами. 3)ти молекулы обладают активностью на поверхности раздела с водой. В частности,, поверхностно-активными свойствами обладают комплексные никель- или ванадиймезопорфирины IX. Поэтому можно предположить, что если, в нефти содержится ванадий- или никельпорфирин с карбоновой кислотной боковой цепью, то эта примесь может быть удалена из нефти процессом эмульсионного разделения. Опубликованные в патентной литературе данные [72] подтверждают возможность удаления железа из нефти при помощи этого метода. Можно также удалить ванадий и никель, если они связаны в виде комплексов поверхностно-активными органическими молекулами. Если эти молекулы обладают лишь умеренной активностью, то снижение растворимости металлов, например добавлением полярных растворителей, может значительно повысить полноту удаления ванадия и никеля. [c.146]

    Для удаления молибдена (III) перед колориметрическим определением ванадия (IV) применялось анионообменное разделение этих металлов из раствора тиогликолевой кислоты [125]. В присутствии тиогликолевой кислоты молибден и ванадий восстанавливаются соответственно до трех- и четырехвалентного состояний одновременно образуется анионный комплекс молибдена (III). Добавляют серную кислоту до pH 1—1,5 и выполняют разделение на энионите в 304-форме. Затем колонку промывают 0,05Af H2SO4 и элюируют молибден разбавленным аммиаком (1 7) в присутствии 3% персульфата аммония. [c.359]

    Показано, что железо, кобальт и никель экстрагируются аминами в виде ди-н-триоксалатных комплексов [43]. Разработан метод разделения железа, цинка, меди и никеля экстракцией раствором три- (н-октил) -амина в ксилоле [45]. Цитратные и тар-тратные комплексы железа, циркония, ванадия, вольфрама и других металлов экстрагируются в присутствии диизоамиламина хлороформом [46]. Исследованы условия экстракции уранила три-н-нониламином из фторидных растворов [47]. [c.135]

    НОЛЯХ сжигают до окиси металла. Фактор пересчета оксихинолятов на металл очень мал, что повышает их значение для весовых определений. Оксин не является селективным реактивом, им можно определить в общем 31 элемент. Однако соответствующим выбором условий кислотности и, если было необходимо, прибавлением комплексообразующих веществ с течением времени было разработако большое число методов определения различных катионов при их совместном присутствии. Селективность оксина значительно повышается при добавлении этилендиаминтетрауксусной кислоты. Применение кдмплексона для маскирования различных катионов значительно расширило возможности применения оксина для определения и разделения разных металлов. В слабокислой среде из комплексонатов большинства катионов соответствующие элементы оксином не осаждаются. Исключение составляют только некоторые элементы побочных групп периодической системы, например шестивалентные молибден и вольфрам и пятивалентный ванадий, не образующие прочных комплексов. В табл. 16 приведены катионы, осаждаемые 8-оксихинолином. [c.110]

    Значительно проще производится разделение по способу извлечения эфиром по Rothe. Этот способ особенно пригоден для отделения больших количеств железа от малых количеств марганца, хрома, никкеля, алюминия, меди, кобальта, ванадия, титана, т. е. от всех металлов, сопутствующих железу в его рудах или в сплавах. 5тот способ основан на способности хлорного железа с эфиром и с соляной кислотой давать легко растворимое в эфире соединение, между тем как хлористые соли других названных элементов этой способностью не обладают. Благодаря этому удается почти количественно выделить эфиром из раствора хлорное железо и таким образом освободиться от большого избытка его. При этом необходимыми условиями являются 1) присутствие железа в виде хлорного 2) определенной плотности кислота 3) отсутствие воды. [c.24]

    Способ разделения в тартратной или цитратной среде. В присутствии достаточного количества тартрат- или цитрат-ионов большая часть гидроокисей различных металлов не осаждается вследствие образования коллоидов или комплексных ионов. Это относится ко всем гидроокисям группы аммиака. С другой стороны, малорастворимые соединения — сульфиды, оксихиноляты, купфер-ронаты — в этих условиях осаждаются. Таким образом, прибавляя сульфид аммония к анализируемому раствору, содержащему в избытке цитрат или тартрат, можно осадить сульфиды железа, никеля, кобальта, марганца, цинка и таллия (I) в растворе остаются алюминий, хром (III), бериллий, титан (IV), цирконий (IV), ванадий (V), галлий, индий, ниобий (V), тантал (V) и уран (VI). [c.103]

    Примером быстрого и количественного разделения, которое-было бы очень трудно осуществить без ионитов, может служить отделение циркония от других катионов и анионов, содержащихся в избытке [101]. В отличие от ряда других металлов цирконий в 0,05М серной кислоте образует отрицательно заряженный сульфатный комплекс, который прочно связывается сильноосновным анионитом в 504 -форме. В результате цирконий удается отделить от №, Со, Ре, Мп, Сг, Т1, Сс1 и других металлов. Для этого амберлит ША-400 (0,1—0,3 мм) загружают в колонку (0,7X15 см) и тщательно промывают 2М серной кислотой, чтобы удалить из него хлорид-ионы. После промывки водой колонку приводят в состояние равновесия с 0,05М серной кислотой. Далее через колонку со скоростью 0,5 мл/мин пропускают 100 мл 0,05М серной кислоты, в которой растворены 1 мг 2г(1 ) и 100 мг ионов других металлов. После этого, чтобы удалить из колонки последние следы мешающих элементов, ее промывают 100 мл той же кислоты. Цирконий элюируют из колонки 100 мл 4М соляной кислоты и определяют методом хелатометрии. При наличии в смеси молибдена и вольфрама разделение получается неполным присутствие олова, ванадия и урана также усложняет анализ. [c.293]

    Обычно присутствие в растворе, содержащем анализируемые ионы металлов, посторонних анионов, способных к образованию комплексных соединений, может оказывать влияние на экстракционное равновесие. Поэтому схема разделения, осуществляемая в растворах НС1, при введении ионов SO - в исследуемый раствор может искажаться. Так как предполагаемые для анализа образцы должны были содержать значительные количества сульфат-ионов, было проверено влияние этих ионов на схему ра.нде-ления ионов ванадия (IV) и (V) и железа (III). Установлено, что при введении в растворы ванадия (V) и железа (III) 8— 10 М по НС1 сульфатов в виде H2SO4 или Маг504 до соотношения 1 100 по отношению к ионам металлов экстракция и элюирование происходят обычным путем. С увеличением 50 до I 200 и выше коэффициенты распределения уменьшаются, а при 1 500 и более ионы ванадия и железа не экстрагируются. [c.127]

    Молочная кислота СНзСН0НС00Н(Нгас1) обладает свойствами слабого комплексующего агента, применяется как фон для полярографического определения ряда металлов, а также как буферный раствор для электрофоретического разделения различных ионов. Как показали наши исследования [1], растворы молочной кислоты могут быть использованы для электрофоретического разделения ионов ванадия (IV) и (V). Присутствие ионов железа (II) и (III) усложняет поведение и определение различных валентных форм ванадия, поэтому представляет интерес исследовать возможность их разделения при совместном присутствии. Предварительно в связи с отсутствием в литературе сведений о состоянии ионов ванадия (IV) в растворах молочной кислоты было изучено комплексообразование в системе ванадий (IV) — молочная кислота методами электрофореза на бумаге и потенциометрического титрования. [c.134]

    Танпип.под названием настойка чернильных орешков применявшийся более ста лет тому назад как реактив для качественною анализа, постепенно вышел из употребления и в начале XX века применялся в металлургическом анализе только в качестве индикатора в молибдат-ном методе определения свинца, по Александеру. Предложенный нами метод отделения тантала от ниобия, опубликованный в 1925 г. [7], положил начало серии исследований, которые показали, что таннин является важнейшим реагентом для количествслного разделения и определения ряда редких и обычных элементов, в особенности элементов группы аммиака, не осаждающихся аммиаком и сернистым аммонием из вич-но кислого раствора. Водный раствор таннина, будучи коллоидальной суспензией отрицательно заряженных частиц, осаждает положительно заряженные частицы гидроокисей металлов полученные адсорбционные комплексы очень хорошо коагулируют и совершенно нерастворимы. Несмотря на большой объем, они легко фильтруются и промываются (особенно при смешивании с бумажной массой) при прокаливании переходят в окислы, удобные для взвешивания. Танниновые комплексы некоторых элементов бесцветны, другие имеют яркие и характерные окраски, что является фактором огромного значения для качественного и количественного анализов. Самым замечательным свойством этих реакций является то, что осаждению не препятствует присутствие органических гидроксикислот винной, лимонной и т, д. В то время как теория взаимодействия таннина с растворами тартратных (и других) комплексов металлов до сих пор неясна, его практическое применение имеет большую ценность в аналитической химии таких редких элементов, как германий, тантал, ниобий, титан, цирконий, торий, ванадий, уран и др. [c.13]

    Осаждение аммиаком—одна из самых обычных операций, применяемых в анализе. Опа проводится либо для определения осажденного соединения весовым путем, либо для совместного отделения двух или нескольких металлов от других металлов. Если эта операция выполняется для количественного весового определения, то ей должно предшествовать выделение кремнекислоты и отделение элементов грунны сероводорода некоторые из этих элементов также более или менее полно осаждаются аммиаком. Вследствие того, что предварительно удалить всю кремнекислоту обычным методом невозможно, оставшееся небольшое количество ее увлекается осадком гидроокисей, и эту кремнекислоту следует выделить и определить, как указано в разделе Кремний (стр. 874). Число металлов, осаждаемых аммиаком, очень велико. Сюда входят алюминий, железо (П1), хром, таллий, галлий, индий, редкоземельные металлы, уран, титан, цирконий, бериллий, ниобии и тантал (стр. 104). К ним надо прибавить пятивалентные фосфор, мышьяк и ванадий, которые осаждаются в виде фосфатов, арсенатов и ванадатов одного или нескольких из перечисленных металлов. При большом содержании этих трех элеме] Тов осаждение их не будет полным фосфор и мышьяк в большем или меньшем количестве осаждаются в виде фосфатов и арсенатов щелочноземельных металлов и магния, если последние присутствуют . Поэтому в таких случаях осанедение аммиаком недопустимо. Неудовлетворительные результаты получаются также, когда раствор содержит большое количество цинка, особенно в присутствии хрома плохо удается разделение и в присутствии кобальта или меди. Бор мешает осаждению, и поэтому должен быть предварительно удален методом, описанным на стр. 763. [c.95]

    При выпаривании азотнокислого раствора досуха и последующем выщелачивании остатка водой происходит отделение ванадия в виде пиро-ванадиевой кислоты H4V2O7 совместно с железом н алюминием от щелочных металлов и урана, переходящих при этом в раствор . Это разделение не количественное , так как небольшие количества ванадия, железа и алюминия переходят в раствор, а уран частично захватывается осадком, особенно если присутствует фосфор. [c.467]

    Осаждение без марганца. Осансдение аммиаком. Двукратного осаждения аммиаком из кипящего раствора достаточно, чтобы количественно отделить железо (И1), алюминий , титан, фссфор, ванадий, хром (П1), редкоземельные элементы, цирконий, а также бериллий, галлий, индий (в случае их присутствия) от марганца, никеля, ш,елочноземельных металлов и магния. Точное разделение достижимо лишь при тех соотношениях, в которых все эти элементы обычно встречаются в горных породах, и при условии, что аммонийные соли, чаще всего хлорид аммония, содер-н<атся в растворе в достаточном количестве. Это последнее условие особенно важно для отделения от магния. Прежде аналитики мало обращали внимания на это условие, что и было, по-видимому, причиной частого получения ими повышенных результатов при определении алюминия, ссобенно когда они удовлетворялись однократным осаждением. Необходимое количество хлорида аммония лучше получать в самом растворе из чистых аммиака и соляной кислоты, чем прибавлять твердую соль, которая редко бывает достаточно чистой. [c.869]


Смотреть страницы где упоминается термин Разделение металлов в присутствии ванадия: [c.28]    [c.166]    [c.103]    [c.114]    [c.889]    [c.229]    [c.106]    [c.814]    [c.1149]   
Качественный анализ (1964) -- [ c.0 ]




ПОИСК







© 2025 chem21.info Реклама на сайте