Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Азотная реакции

    Медь не растворяется в соляной кислоте, но растворяется в азотной. Реакция в концентрированной азотной кислоте описывается несбалансированным химическим уравне- [c.241]

    Как можно получить кремний в свободном состоянии Кремний растворяется в смеси плавиковой кислоты с азотной, реакция идет по уравнению [c.52]

    На небольшое количество металлического свинца подействовать в отдельных пробирках разбавленными и концентрированными кислотами — соляной, серной, азотной. Реакции производить на холоду и при нагревании, (Тяг а ) При проведении реакции с концентрированной азотной кислотой обратить внимание на появление осадка соли, трудно растворимой в азотной кислоте, но легко растворимой в воде. [c.112]


    Промышленное нитрование пропана, имеющее в настоящее время первостепенное значение, осуществляется следующим образом. Пропан под давлением 7 ат нагревается до температуры 430—450° и в изолированном реакторе приводится в соприкосновение с потоком тонко распыленной 75%-ной азотной кислоты. Азотная кислота подается через насадки (жиклеры) в различные точки потока пропан-газа (рис. 70). Насадки расположены таким образом и количество подаваемой через них кислоты дозировано так, чтобы теплота испарения кислоты полностью компенсировала теплоту реакции нитрования. В то- [c.126]

    В последнее время оказалось возможным нитровать также и высокомолекулярные углеводороды благодаря наблюдению Грундмана [6], который установил, что при достаточно высоких температурах— уже при 160—180°—происходит очень быстрое нитрование парафиновых углеводородов в жидкой фазе перегретыми парами азотной кислоты или двуокисью азота. Оказалось, что реакция эта не зависит от концентрации азотной кислоты. При этом необходимо, чтобы применяемые для нитрования углеводороды или техническая смесь углеводородов обладали начальной точкой кипения выше 180°. [c.266]

    На промышленных установках окись азота отделяют от продуктов реакции и непрореагировавшего углеводорода и превращают снова в азотную кислоту. [c.282]

    Аналогично объясняется также образование кислородных соединений, как альдегидов и спиртов. Такие реакции могут протекать также и без наличия свободного кислорода, так как он образуется вследствие разложения азотной кислоты. [c.285]

    Выход продуктов реакции (в %), получаемых в одинаковых условиях газофазного нитрования этана, пропана, н- и изобутана, приведен в табл. 9 3. Здесь же приведен также выход за проход, рассчитанный по азотной кислоте, который показывает, сколько получается нитропарафина, из 100 частей азотной кислоты за один проход через реакционный сосуд. При этом избраны не наилучшие условия нитрования однако из таблицы видно, как улучшается нитрование с повышением молекулярного веса углеводородов. [c.293]

    Подобные результаты получаются также и при употреблении хлора. Если применяют смеси хлора и кислорода, то для достижения максимального эффекта необходимо соблюдать определенное соотношение смесей, которое должно согласовываться с отношением азотная кислота углеводород и температурой реакции (сравни также главу IX, стр. 571). [c.298]


    Азотная кислота является лучшим нитрующим агентом, чем двуокись азота. Бахман и сотрудники это объясняют тем, что азотная кпслота, образуя ОН-радикалы, увеличивает количество алкильных радикалов, имеющее решающее значение для протекания реакции [П8  [c.299]

    Повышение давления увеличивает скорость реакции, но почти не увеличивает выход давление необходимо особенно для того, чтобы молярное отношение метана к азотной кислоте было 10 Ь [c.300]

    При работе с легкокипящими углеводородами без применения давления требуется, естественно, весьма длительное время для проведения реакции например, гексан кипятился с дымящей азотной кислотой в течение 6 дней с обратным холодильником. Нитропарафины гораздо легче растворимы в концентрированной кислоте, чем исз одный материал. Это обстоятельство объясняет предпочтительное образование ди-и полинитросоединений при таком методе нитрования углеводородов. [c.302]

    Как показал Марковников [125], при употреблении нитрующей смеси требуется более высокая температура реакции, чем при азотной кислоте. Это объясняется тем, что и без того малая растворимость углеводородов в азотной кислоте еще более понижается в присутствии серной кислоты. Поэтому изложенный метод не получил применения в промышленности. [c.302]

    Новые работы А. Титова [128] посвящены исследованию механизма реакции Коновалова с разбавленной азотной кислотой. Титов предполагает, что нитрование протекает при помощи двуокиси азота, которая получается при реакции путем обменного действия низших окислов азота на азотную кислоту. Это предположение подтверждается тем фактом, что в присутствии мочевины, которая, как известно, улавливает окислы азота, нитрования вовсе не происходит. [c.303]

    Реактор представляет собой цилиндрический сосуд, наполненный нитруемым углеводородом или углеводородной смесью и погруженный на две трети в масляную или воздушную баню. Внутри этого цилиндра имеется змеевик-перегреватель, нижний конец которого, находящийся у дна сосуда, снабжен распыляющей пластинкой из пористого материала верхний конец змеевика соединен с капельной воронкой, при помощи которой через капилляр подается в сосуд точно измеренное количество азотной кислоты. На дне реактора имеется отводная трубка-сифон, через которую продукты реакции могут быть выведены. Посредине реактора помещается термометр на ножке, а рядом с ним трубка, через которую отводятся газообразные продукты реакции водяные пары, окись и закись азота и азот. Неконденсируемые компоненты попадают в газометр, а конденсат собирается в сборнике, из которого маслообразная часть возвращается через сифон снова в реакционный сосуд, тогда как вода время от времени сливается. [c.305]

    При проведении процесса вначале подогревают. углеводород до температуры реакции, а затем начинают приливать по каплям азотную кислоту. Последняя, проходя через змеевик-перегреватель, полностью испаряется и благодаря пористой пластинке проходит через реакционную жидкость в пузырьков пара, производя при этом нитрование. [c.305]

    При нитровании в большом масштабе, проводимом по этому методу, необходимо учитывать, что реакция нитрования является экзотермическим процессом. Поэтому углеводород подогревают до необходимой исходной температуры, которая затем при хорошей теплоизоляции повышается за счет теплоты испарения азотной кислоты. Температура затем регулируется скоростью подачи азотной кислоты. Чрезмерное нагревание может быть предотвращено применением более разбавленной азотной кислоты. [c.305]

    При еще большем избытке азотной кислоты нитросоединений, содержащих более 2—3 нитрогрупп, вероятно, почти не образуется, так как перегруженные нитрогруппами углеводороды будут теряться вследствие дальнейшего окисления, на что указывает весьма резкое повышение содержания карбоновых кислот в продуктах реакции. [c.307]

    Напротив, удалось нитровать нитропропан в динитропродукты, подвергая нитропропан в гомогенной системе действию азотной кислоты при низкой температуре. Для этой реакции используется 2-нитропропан, который при этом переходит в 2,2-динитропропан. Динитросоединения [c.339]

    При нитровании по Грундману, которое протекает без примеиепия повышенного давления, наивыгоднейшая температура реакции 160—180°. Необходимые для реакции пары азотной кислоты получают пропусканием [c.127]

    При действии азотной кислоты на углеводороды в соответствующих условиях образуются нитросоединения. Эта важная реакция впервые была обнаружена по отношению к ароматическим углеводородам. В 1834 г. Е. Митчерлих впервые получил нитробензол (мирбановое масло), обрабатывая бензол дымящей азотной кислотой. В промышленных условиях нитробензол получен в 1847 г. (г. Мансфильд, Англия). Но вскоре оказалось, что такие нитросоединения восстанавливаются в амины (зинин), которые обладают высокой реакционной способностью. Это сделало их важными промежуточными продуктами для ф армацевтической и красочной промышленности. Так, реакция нитрования наравне с сульфированием стала основным процессом препаративной химии ароматических соединений и с течением времени развилась и получила очень большое техническое значение. [c.265]


    При гавофаэном методе нитрования смесь нитруемого. углеводорода вместе с парами азотной кислоты нагревается до 400—450°, благодаря чему реакция проходит в очень короткий срок (время реакции измеряется секундами). [c.279]

    Реакционный сосуд, представляющий U-образную стеклянную трубку диаметром 10 мм и емкостью 280 мл, помещают в солевой бане. Через него пропускают гслмогенную смесь паров азотной кислоты и углеводорода реакция протекает при температуре около 420°. [c.279]

    Перед началом реакции солевая баня, заполненная эвтетикой из нитрита натрия и нитрата калия, подогревают до 4,20°. Углеводород пропускают через нагретую до 108° и поддерживаемую на постоянном уровне 65%-ную азотную кислоту со скоростью 150 л1час (скорость газа измеряется реометром). При это.м углеводород увлекает с собой столько паров азотной кислоты, что образуется смесь, содержащая углеводород и азотную кислоту в молярном соотношении 2 1. [c.279]

    Смесь продуктов реакции разделяется на два слоя, из которых нижний состоит из разбавленной азотной кислоты, а верхний из нитроуглеводорода. В этом процессе об разуются только мононитросоедине-ния, так как ди- и полинитросоединения при высоких температурах проведения реакции газофазного нитрования подвергаются пиролизу и не могут быть выделены. [c.280]

    В общем теперь считают, что при благоприятных условиях протекания реакции за один проход через аппаратуру при нитровании метана превращается в питропарафин 13% введенной азотной, кислоты, при нитровании этана — 30%, при нитровании более высокомолекулярных парафиновых углеводородов — от 40 до 45%. [c.281]

    Р. Ивелл [86] недавно высказал мнение, что механизм реакции через радикалы неприемлем. Основанием такого заключения явился тот факт, что при нитровании этана вплоть до 27% образуется нитрометан, этиловый же радикал не распадается на продукт только с одним атомом углерода. Для объяснения факта появления низкомолекулярных нитропарафинов автор принимает образование продукта присоединения азотной кислоты и углеводорода, которьц может либо распадаться на спирт и низкомолекулярный нитропарафин, либо переходить в соответствующий целевой нитропарафин. [c.284]

    Такое же благоприятное влияние оказывают галогены. Они обра-З уют свободные радикалы, как это уже известно, из реакции хлорирования. Образующийся галоидоводород опять окисляется в свободный галоген, и последний действует снова радикалообразующе. По этой причине для ускорения реакции нитрования галогена требуется значительно меньше, чем кислорода. Кроме того, галогены оказывают благоприятное действие вследствие того, что они соединяются с окисью азота в хлористый нитрозил и тем самым не происходит обрыва цепи. Кислород в условиях газофазного нитрования не может так быстро окислять N0 в ЫОг- Азотная кислота, как и N02, может употребляться как нитрующий агент. Действие азотной кислоты основывается лишь на том, что она поставляет N02 это происходит путем термического разложения ННОз0H + N02. Распад с образованием радикалов также объясняет, почему с азотной кислотой получаются лучшие результаты, чем с N02 [89]. При разложении азотной кислоты образуются чрезвычайно активные гидроксильные радикалы, которые при взаимодействии с углеводородом сразу же образуют алкильные радикалы НН + ОН-> К + Н20. Поэтому, как нашел Бахман с сотрудниками, добавка кислорода прн нитровании с двуокисью азота имеет относительно больший эффект, чем при применении самой азотной кислоты. Но и N02, как таковая, способствует образованию радикалов и одновременно нитрует. [c.285]

    Хэсс, Шехтер и Александер [93] снова исследовали нитрование метана, на этот раз под давлением до 70 ат. При этом реакция превращения очень ускорялась. Авторы установили, что необходимо отделить все вещества, которые каталитически способствуют окислению, так как окислительные процессы благодаря применению давления также сильно ускоряются. Максимальное превращение составило 27% в расчете на азотную кислоту при 444° и молярном отношении метан HNOз=lG,5 1. В среднем за один проход превращение азотной кислоты составляет 20%. Реакция велась в трубке из стекла пайрекс. [c.288]

    Этан и азотная кислота перемещиваются в смесительной камере 5, причем кислота испаряется. Пары попадают затем в реакционный сосуд 7, который также помещается в солевой бане. Температура при входе и выходе из реакционной камеры контролируется термопарами 8. Продукты реакции проходят затем через холодильник в отстойник 11, где разделяются на жидкость и газ. [c.290]

    В продуктах реакции газофазного нитрования парафиновых углеводородов до сего времени не найдены динитросоединения, вероятно, вследствие того, что при высокой температуре реакции тотчас же наступает пиролиз ди- и полинитросоединений. После достаточно точного изучения техники газофазного нитрования и переработки продуктов реакции Данциг и Хэсс [100] попытались путем прямого нитрования парафинового углеводорода специфического строения изолировать динитросоединения. Для этой цели они нитровали в газовой фазе при температуре 408—410° парафиновый углеводород с двумя третичными атомами водорода, а именно 2,3-диметилбутан (СНз)2СН — СН (СНз)2, в следующих условиях 68%-ная азотная кислота в виде тщательной смеси с изопропилом, подаваемой в апаратуру при 408—410°, продолжительность реакции 1,2 сек. и молярное отношение углеводород ННОз, равное 1,6 1. Превращение за один проход через аппаратуру, одинаковую с аппаратурой для нитрования пентана, составляет в расчете на [c.293]

    Наилучшие условия реакции нитрования неогексана при молярном отношении углеводород НКОз, равном 1,6 1, температуре 415° и времени контактации 1,2 сек. Превращение относительно углеводорода за один проход составляет 26%, а выход 56% превращение в расчете на азотную кислоту составляет 35%, выход 45%. Процентное отношение, в котором находятся трудно разделимые друг от друга при разгонке изомеров 2,2- и 3,3-диметил-1-нитробутан (температура кипения при 15 мм рт. ст. равна 64—65°), может быть установлено термическим анализом хлоргидрата, который получают восстановлением смеси аминов. [c.294]

    При нитровании двуокисью азота очень существенно, чтобы время контактации было продолжительным для достижения почти таких же выходов, как и при нитровании с парами азотной кислоты. Английские ученые, исследовавшие этот способ нитровация с промышленной точки зрения, считают его превосходным. При этом способе лу 1ше контролируется температура, процесс происходит циклично, т. е. окислы азота и неиспользованный парафиновый углеводород возвращаются обратно в реакцию. При нитровании пропана двуокисью азота при 360° и 10 ат давления продукт реакции содержит 20—25% нитрометана, 5—10% нитроэтана, 45—55% 2-нитропропана и 20% 1-нитропропана. Выход в расчете на пропан составляет 75—80% и свыше 90% в расчете на двуокись азота [108]. 2,2-динитропропана образуется в количестве 1% от yiMMbi нитропарафинов. [c.296]

    Точные и подробные сведения о промышленном газофазном нитровании низкомолекулярных парафиновых углеводородов до настоящего времени в литературе отсутствуют. В последнее время Файт и его сотрудники [111] опубликовали более подробные данные о промышленном нитровании пропана. Пропан нагревают до 430—450° и помещают в изолированный реактор под давлением около 7 ат, где он смешивается с потоком 757о-пой мелко распыленной азотной кислоты. Азотная кислота подается форсунками, находящимися в различных местах потока пропана. Расстановка форсунок и количество впрыскиваемой кислоты дозированы так, что теплота испарения достаточна для компенсации тепла, выделяемого при реакции. Этим достигается широкое тем- [c.297]

    Лишь значительно позже этому открытию было уделено необходимое внимание в 1949 г. Хэсс и Александер [113] и в 1952 г. Бахман, Хэсс и Аддисон опубликовали подробные сведения о влиянии добавки кислорода на нитрование пропана и н-бутана азотной кислотой и двуокисью азота. При нитровании азотной кислотой с добавкой кислорода реакция превращения значительно ускоряется, но конеч-ный выход нитропарафинов сильно падает. Если же увеличить соотношение поверхности к объему реактора -или ввести водяной пар, то выход будет удовлетворительным по отнои1 нию к прореагировавшему углеводороду. При нитровании двуокисью азота добавка кислорода ускоряет. превращение и увеличивает выход. При этом время пребывания при нитровании можно значительно сократить. Добавка кислорода при нитровании с двуокисью азота благоприятно влияет на нитрование, чем при при- ленении азотной кислоты. [c.298]

    В то время как при температурах 115—120° с азотной кислотой удельного веса 1,155 (25%-ной) образуется еще очень мало нитропарафинов, при повышении температуры реакции до 140—150° выход нитоо-парафинов достигает 60% из расчета на израсходованный углеводород. Концентрация азотной кислоты не играет здесь решающей роли. Коновалов успешно нитровал, применяя также 13%-ную азотную кислоту (З дельный вес 1,075) при указанных температурах обычно требовалось [c.303]

    При повторных исследованиях протекания реакции нитрования по Коновалову Титов ясно показал, что парафиновые углеводороды в отсутствии NO2 не нитруются. При 50-часовом стоянии 2,7,-диметилоктана с азотной кислотой удельного веса 1,42 при 12—15° в присутствии мочевины нитрование не наступает. При добавлении NO2 при прочих благоприятных условиях наступает реакция образования первичных и третичных нитоосоединений. Подобный же результат Титов получил и при [c.303]

    Упоминавшиеся выше трудности, обусловливаемые наличием двухфазной системы, могут быть легко преодолены также и при нитровании азотной кислотой. Для этого X. Грундман [132] предложил пропускать перегретые пары азотной кислоты в предварительно нагретый до температуры реакции жидкий углеводород, применяя пористые пластины для тонкого распределения паров в жидкости. Наиболее подходящей темпе- ратурой реакции оказалась область между 160 и 180°. Этот интервал температур, при котором нитрование высокомолекулярных углеводоро- [c.304]

    Так как при нитровании азотная кислота не полностью вступает в реакцию, то при установлении количества ди- и полинитрозамещен-ных необходимо учитывать количество азотной кислоты или двуокиси азота, действительно вошедшее в молекулы углеводорода. [c.307]

    В настоящее время 2,2-динитропропан можно получать в непрерывном процессе взаимодействием 2-нитропропана с 70%-ной азотной кислотой при температуре реакции 210—230°, давлении 60—100 ат, молярном отношении 2-нитро1про пан азотная кислота, равном 1 1, и объемной скорости (1 л реакционной смеси на 1 л реакционного пространства в час) с превращением в 11—14% мол. в пересчете на введенный [c.340]

    Первым через четверть века после открытия парафина Райхенба-хом занялся его окислением Хофштедтер, который использовал для этой цели азотную кислоту [30]. Он, а позднее также и Виллиг [31] получили в качестве продуктов реакции преимущественно низшие карбоновые кислоты масляную, валериановую и янтарную. [c.443]


Смотреть страницы где упоминается термин Азотная реакции: [c.270]    [c.251]    [c.280]    [c.290]    [c.294]    [c.294]    [c.303]    [c.304]    [c.306]    [c.340]   
Курс аналитической химии Том 1 Качественный анализ (1946) -- [ c.455 ]




ПОИСК







© 2025 chem21.info Реклама на сайте