Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Кинетика макроскопическая

    Макроскопическая кинетика. Макроскопическая кинетика изучает процессы образования вещества, в которых наряду с химическими реакциями учитываются явления диффузии или адсорбции. Иначе говоря, в макроскопической кинетике рассматриваются многостадийные гетерогенные процессы, у которых скорости химических превращений и диффузионных или адсорбционных явлений соизмеримы. [c.17]


    Для более сложных моделей молекул, например тех, которые предполагают наличие центральных сил, мы заменяем вышеуказанный ряд параметров новым рядом, определяющим силовое поле. Если добавить к тому же проблему сложных молекул (т. е. молекул, обладающих сложным внутренним строением), то потребуется еще дополнительный ряд параметров, определяющих взаимодействия между внутримолекулярными движениями и внешними силовыми полями. В случае жесткой сферической модели это потребовало бы введения дополнительных коэффициентов для описания эффективности передачи внутренней энергии между сталкивающимися молекулами. Несмотря на эти трудности, кинетическая теория в ее простом равновесном приближении и в ее более точном неравновесном представлении способна воспроизвести физическое поведение в форме, которая математически проста, качественно правильно представляет взаимозависимость физических переменных и дает количественное соответствие, более точное, чем только порядок величины. Как таковая, эта теория представляет ценное орудие прямого проникновения во взаимосвязь между молекулярными процессами и макроскопическими свойствами и, как мы увидим, способствует пониманию существа кинетики. [c.173]

    Л е в и ч В. Г., Усп. хим., 34, 1846 (1965). Теория макроскопической кинетики гетерогенных и гомогенно-гетерогенных процессов. [c.272]

    Успех описания сложных реагирующих систем в равной мере зависит, во-первых, от знания существа процессов, идущих на микроскопическом уровне, во-вторых, от умения обобщать микроскопические законы на макроскопический уровень и, в-третьих, от понимания характера взаимосвязи между основными законами естествознания и их частным проявлением — законами химической кинетики. Это обстоятельство породило существование трех различных подходов к решению проблем химической кинетики физико-химического, формально-кинетического и естественно-механического [c.4]

    Физико-химический подход исторически возник ранее остальных. Его стратегия состоит в том, что последовательно определяется сначала скорость элементарного акта как функция параметров, характеризующих реагирующие объекты (и среду в целом — для непростых кинетик), затем скорость элементарного процесса как функция скоростей элементарных актов и, наконец, скорость н все макроскопические характеристики сложного процесса как функция скоростей элементарных процессов. Для этого сначала решается динамическая задача расчета сечений реакций, затем статистическая задача нахождения функций распределения и, наконец, кинетическая задача нахождения макрохарактеристик процесса. [c.4]

    В формально-кинетическом подходе, напротив, основное внимание концентрируется как раз на законах построения кинетической и математической модели сложного процесса и подход может быть охарактеризован как макроскопический от начала до конца. Если для физико-химика элементами являются атомы, молекулы и т. д., то для формального кинетика элементом будет сам элементарный процесс. Характеристики этого элементарного [c.5]


    Макроскопическая формулировка кинетики химических реакций 41 [c.41]

    Кинетика по способу описания делится на два раздела. В формальной, или феноменологической кинетике сформулированы закономерности, позволяющие описывать химическую реакцию макроскопически на основе экспериментальных данных. Молекулярная кинетика изучает превращение на основе молекулярных данных о свойствах частиц. [c.705]

    Параметрами состояния называются физические величины, характеризующие макроскопические свойства среды,— плотность, давление, температуру, объем. Они, как правило, связаны уравнением состояния (например, для идеального газа, это уравнение (1.21)), потому для определения макроскопического состояния достаточно задавать не все параметры состояния, а лишь некоторые из них. Функциями состояния называются такие физические характеристики, изменение которых нри переходе системы из одного состояния в другое зависит лишь от параметров состояния (начального и конечного), а не от пути перехода (т. е. особенностей кинетики процесса). Функции состояния, посредством котбрых (или их производных) могут быть в явном виде выражены термодинамические свойства системы, называются характеристическими. Важнейшими из них являются внутренняя энергия и, энтальпия Н, энтропия 8, равновесная свободная энергия (или потенциал) Гиббса О, равновесная свободная энергия (или потенциал) Гельмгольца Р. Если же значение функции за- [c.22]

    Когда скорость реакции намного превосходит скорость подвода реагентов, макроскопическая кинетика определяется процессами транспорта и не отражает истинной скорости реакции на поверхности, ее зависимости от температуры, концентрации и других параметров. [c.73]

    Все, кто имеет дело с уравнениями типа уравнений химической кинетики ф= X), а такие уравнения характерны для эволюции самых различных макроскопических систем, смогут использовать многое из изложенного в этой книге. [c.6]

    Электронное возбуждение, ионизация, образование радикалов, окисление и сшивка также являются основными процессами, происходящими в твердых полимерах под действием ядерного облучения (а, р,у-излучение, нуклоны). С учетом влияния подвижности молекул на кинетику деградации и сшивку материала усиливающее действие напряжения возможно, но это еще нельзя считать доказанным. Перед современными исследователями стоит задача понять взаимосвязь между характеристиками облучения (зависимость дозы облучения и скорости дозирования), структурой сетки и макроскопическими свойствами материала после его облучения [198, 200,219]. [c.322]

    В отдельных местах полимера в результате слияния микротрещин появляются макротрещины, которые растут ускоренно. Закономерности роста таких магистральных, макроскопических трещин наиболее обстоятельно изучены на полимерах. Исследования кинетики сквозных магистральных трещин проводились на тонких пленках из полимеров (производные целлюлозы), где время роста магистральной трещины составляло большую часть долговечности полимера. Развитие магистральной трещины является ускоренным [c.325]

    Неравновесная кинетика не может основываться на наиболее общем и прямом подходе, опирающемся на решение полной системы кинетических уравнений для заселенности отдельных кванто ых состояний с использованием сечений элементарных процессов. Гораздо более продуктивен упрощенный подход, использующий основные макроскопические характеристики реагирующей системы — характерное время химической реакции и характерное время релаксации Неравновесные эффекты становятся все более существенными по мере увеличения отношения Тр(.л/Тх . Поскольку большинство химических реакций имеет значительно более крутую температурную зависимость, чем релаксационные процессы, то ясно, что сильные отклонения от равновесия наиболее вероятны в высокотемпературных реакциях. [c.64]

    Методом химической кинетики является изучение скоростных закономерностей протекания химических процессов. Совокупность элементарных стадий, из которых складывается химическая реакция, называется ее механизмом. Различают детальный механизм химического процесса, т. е. последовательность элементарных актов (одностадийных реакций), и стадийный механизм, как совокупность химических и макроскопических стадий (подвод реагирующих веществ, т. е. диффузия к зоне реакции, адсорбция или растворение, собственно реакция, отвод продуктов и т. д.). Протекание всей совокупности стадий представляет собой химический процесс. [c.234]

    Видимо, будущее развитие кинетики ферментативных реакций СО СЛОЖНОЙ стехиометрией покажет, насколько статистическая кинетика в ее современном варианте оказалась полезной для анализа конкретных экспериментальных данных. Автор, со своей стороны, полагает, что главное достоинство статистической ферментативной кинетики заключается не столько в ее значимости для расчета формальных эмпирических коэффициентов и количественного анализа экспериментальных кинетических кривых или в ее формулах, показывающих связь микроскопических и макроскопических параметров, сколько в ее общих выводах, иллюстрирующих принципиальные закономерности ферментативной деструкции полимерных субстратов во времени. Именно на эти закономерности будет обращаться основное внимание при изложении кинетики ферментативных превращений полимеров. В заключение данного раздела будут изложены кинетические подходы к деструкции полимерных субстратов, разработанные автором с коллегами, в которых сделана попытка уйти от формализованных статистических методов математического анализа и главное внимание уделено аналитической ферментативной кинетике. [c.107]


    Курс состоит из двух частей. В первой части рассматривается строение вещества. Здесь проводится подход к химической системе как системе из взаимодействующих электронов и ядер, из которых формируются атомы, многоатомные частицы, а затем и макроскопические вещества. В неразрывной связи со строением описывается состояние соответствующих систем. С этой целью авторы отказались от традиционной компоновки материала. В частности, понятия внутренней энергии и энтропии вводятся в первой части курса в связи с изложением вопросов строения и состояния макроскопических систем. Это же касается некоторых понятий теории растворов, как представления о предельно разбавленном и идеальном растворе, которое связано именно с особенностями строения растворов, природой взаимодействия между частицами раствора. Вторая часть посвящена теории химического процесса. В ней рассматриваются термодинамика и кинетика химических реакций. [c.3]

    Кинетический анализ должен включать не только анализ закономерностей химических реакций, но и анализ процессов переноса вещества и теплоты в изучаемой системе. Исследования такого рода составляют предмет макроскопической кинетики — макрокинетики. [c.157]

    В результате было невозможно изучить при обычных температурах большинство двухатомных молекул в их газообразном состоянии и неорганическая химия превращалась в науку о труднолетучих кристаллических соединениях или о водных их растворах. В то же время в ряду случаев можно было предположить, что мимолетно существующие при более низких температурах, двухатомные молекулы служат промежуточными продуктами при протекании обычных химических реакций и, следовательно, представляют практический интерес, существенный для понимания кинетики многих химических процессов. Только небольшому числу двухатомных молекул удается избегнуть общей участи, т. е. гибели при обычных температурах, и их можно собрать в макроскопических количествах и хранить в виде газообразных веществ определенного состава. К числу таких исключений относятся Нг, N2, О2, СО, N0 и молекулы галогенов. Характерно, что среди названных веществ большинство построено из кайносимметричных атомов. [c.295]

    Очень часто рост макроскопических трещин разрушения определяется кинетикой поступления жидкой фазы в их вершину, в частности закономерностями ее вязкого течения в трещине. Очевидно, что затвердевание жидкой фазы должно практически полностью предотвращать проявление эффекта адсорбционного понижения прочности. Вместе с тем и повышение температуры может приводить к существенному уменьшению интенсивности его проявления. Это обусловлено облегчением пластического течения с повышением температуры под действием термических флуктуаций идет рассасывание деформационных микронеоднородностей вследствие этого при повышенных температурах локальные концентрации напряжений оказываются слишком малы, чтобы инициировать развитие зародышевых микротрещин. В результате при повышении температуры происходит переход от хрупкого разрушения твердого тела в присутствии адсорбционно-активной среды к его пластическому деформированию. Аналогичным образом может влиять и уменьшение скорости деформирования твердого тела при медленном деформировании также увеличивается вероятность рассасывания локальных концентраций деформаций и напряжений. [c.341]

    В целом физико-химический подход малоконструктивен в смысле производства таких зависимостей, которые содержали бы экспериментально наблюдаемые макроскопические величины и позволяли быстро и обоснованно строить математическую модель изучаемого сложного процесса. Это обстоятельство всегда отчетливо понималось макроскопическими кинетиками, наиболее точно охарактеризовал ситуацию Ф. Даниэльс Несмотря на Эйринга и Аррениуса химическая кинетика — это сплошная неразбериха. Но сквозь всю путаницу усложнений просвечивает один мощный луч надежды. Многочисленные последовательные, конкурирующие и обратные реакции сами по себе являются простыми мономолекулярными или бимолекулярными реакциями, которые в принципе подчиняются простым законам. Мы боремся, следовательно, не столько с первичными стадиями, сколько с задачей их взаимной увязки для того, чтобы объяснить наблюдаемые факты и сделать практические предсказания . [c.5]

    Заметим, что существенно различная математическая техника, присущая каждому из подходов, позволяет некоторые конкретные задачи решать более просто и экономично. Например, получение разумных нулевых приближений по значениям кинетических параметров — исключительная привилегия физико-химического подхода, в то время как аксиоматическое построение кинетики наиболее строго и последовательно проводится в рамках естественномеханического подхода, а решение таких задач макроскопической кинетики, как прямая или обратная кинетические задачи, в основном осуществляется техникой формально-кинетического анализа. Поэтому очевидно, что при построении универсальной процедуры последовательного кинетического анализа, т. е. процедуры, не зависящей от конкретного кинетического механизма или теплофизических свойств изучаемой системы, необходимо использовать как основные физические идеи, так и математическую технику всех трех подходов. [c.8]

    Переход от микроскопии элементарного процесса к макроскопии сложного химического процесса, характеризующегося одновременным протеканием множества элементарных стадий,— самое тонкое место всего исследования, требующее знания как конкретных значений кинетических параметров отдельных элементарных стадий, так и правил их взаимной увязки. Концентрируясь на решении последней задачи, кинетик часто рассматривает весь физико-химическйй подход под весьма специфическим углом зрения как потребитель значений кинетических параметров. Однако, если для физикохимика расчет значений кинетических параметров — одна из основных задач исследования, то для формального кинетика эти значения — лишь начальные приближения. В ходе формально-кинетического анализа происходит непрерывное уточнение и механизма сложного процесса, и значений кинетических параметро 1. В этом смысле формально-кинетический подход скорее не альтернатива физико-химическому, а его логическое продолжение на макроскопическом уровне. [c.104]

    Функция скорости ш(с) может быть определена из макроскопических наблюдений, однако если неизвестны элементы WJ ), то ее структура и (с) = ц7 (с) остается неизвестной. Условие (3.12) предполагает существование а(с), но также ничего не говорит о его структуре, и для построения г(с) необходимо знание лишь и> с). Поскольку связь между псевдопотенциальной функцией и кинетикой реализуется только через функцию полной скорости, можно построить множество псевдопотенциальных функций, удовлетворяющих (3.12), т. е. построить множество кинетик, удовлетворяющих требованиям (3.1), (3.11), (3.12) и лежащих, таким образом, в классе простых. Ограничения, накладываемые термодинамикой, не препятствуют множественности представления а(с) условие (1.66) или [c.119]

    Внешняя массо- и теплопередача. Помимо процессов диффузии и теплопередачи внутри пористой частицы, существенное влияние на макроскопическую скорость каталитической реакции может оказывать массо- и теплообмен между внешней поверхностью частицы и омывающим ее потоком. Гетерогенно-каталитический процесс всегда проводится в условиях интенсивного движения реагирующей смеси при этом в основной части ( ядре ) потока молекулярная диффузия играет пренебрежимо малую роль по сравнению с конвекцией, благодаря которой происходит выравнивание состава и температуры смеси. Y твердой поверхности скорость потока обращается, однако, в нуль поэтому вблизи поверхности Ейзренос вещества будет определяться молекулярной диффузией реагентов. В первых работах по диффузионной кинетике гетерогенных реакций, принадлежащих Нернсту [11 ], принималось, что вблизи поверхности существует слой неподвижной жидкости толщиной б и диффузия через этот слой ли- [c.102]

    Поскольку функция распределения в этом приближении зависит только от [А] и [В], скорости реакций выражаются через эти концентрации, и поэтому кинетика реакций может быть описана макроскопическими кинетическими уравнениями, содержащими только концентрации и константы скорости. Следует, однако, иметь в виду, что уравнения, полученные в квази-стациопарпом приближении, могут отличаться от уравнений, полученных на основании феноменологического закона, поскольку наряду с элементарными процессами в выражение скорости реакции вводят процессы обмена энергии. [c.50]

    Исследование вопроса о применимости квазистационгфпого приближения для описания неравновесных эффектов в мономолекулярных (см. [98]) и бимолекулярных реакциях показывает, что это приближение справедливо для времени, существенно превышающего максимальное время релаксации всех возможных процессов. Поэтому получеппые на основании такого приближения уравнения макроскопической кинетики сп])аведливы не с самого начала реакции (( = 0), а только по истечении времени, заметно превышающего время релаксации. Если за это время прореагировала столь малая доля молекул, что ею можно пренебречь, то формально мо кпо считать эти [c.50]

    В более сложных случаях следует учитывать нарушение равновесного распределения по колебательным и вращательным степеням свободы, а иногда — и по поступательным. При этом, как уже отмечалось ранее, следует учитывать то, что соотношение моя ду макроскопическими временами Трел и Треак далеко пе всегда определяет степень нерапповесности системы. Правильный критерий степени нарушения равновесного распределеиия, вызываемого реакцией, формулируется в терминах микроскопических констант скоростей релаксации и реакции, определяющих соотношение между скоростями изменения заселенности заданного квантового состояния реагентов за счет этих двух процессов. Именно поэтому изучение элементарпых констант релаксационных процессов представляет большой интерес для химической кинетики. [c.76]

    Рассмотрим теперь два основных понятия химической кинетики концентрацию вещества с,- и время Г. Последнее является обычным физическим временем (предполагается непрерывность и уникурсальность), а концентрация определяется как число частиц данной компоненты массы т, и в данном энергетическом состоянии ев некоторой единице объема (предполагается, что он содержит достаточно большое количество частиц для макроскопического усреднения элементарных процессов). Таким образом, по своему существу с,- является статистической величиной. Напомним, что с,- = с,- (t) непрерывна и по крайней мере дважды дифференцируема с,- - скаляр. [c.15]

    Исследование кинетики каталитических процессов - одним из основных методов определения механизма катализа, знание которого необходимо для решения проблем научного и практичесюго плана,Кинетические данные при этом до.таны быть надежными и неискаженными макроскопическими факторами. К последним относят физические этапы переноса вещества.и тепла, затруднения в осуществлении которых приводят к концентрационным и температурным неоднородностям в реакционном объеме и внутри кусков пористого катализатора и тем самым оказывает искажающее влияние на кинетику процессов /17 К одному из видов макрофакторов В.А.Ройтер отнес такхе химические неоднородности в ишхте и по глубине зерен контакта, которые могут возникать вследствие химического взаимодействия катализатора с реакционной средой /2-А7 и неучет которых, также как и первых двух типов искажений, обесценивает результаты исследований как в теоретическом, так и в практическом отношениях. Большое внимание этому важному для катализа принцицу о воздейотвии реакционной системы на катализатор уделяет в своих работах Г.К.Боресков /Ь- . [c.90]

    В этом случае кипящий слой играет роль сухой псевдожидкости с некоторой средней плотностью р л = < Рт [210, 235]. Макроскопические куски раздробленной руды со средней плотностью Ркус < Рсл, всплывают на поверхность обогатительной ванны (рис. IV. 12) и удаляются специальными движущимися скребками [210, 235]. Куски с плотностью р ус > Рсл оседают на дно обогатительной ванны и уносятся специальным транспортером. Кинетика процесса определяется временем, необходимым для оседания наиболее близких по плотности к р л кусков, для которых р ус = = Рсл + Ар(,л. Разность ркус — Рсл > т. е. четкость гравитационного разделения, лимитируется масштабом пульсаций плотности кипящего слоя Др-л = бРсл- [c.198]

    Если число разорванных цепных сегментов полностью соответствует определенному путем анализа числу концевых групп и если каждый сегмент разрывается при предельном значении напряжения, полученном с помощью анализа искаженных полос ИК-поглощения, то накопленные молекулярные напряжения будут сравнимы по порядку величины с приложенным макроскопическим напряжением. В таком случае следует предположить, что кроме конформационной перестройки и проскальзывания цепн заметное влияние на кривые напряжение—деформация оказывают акты разрыва цепи. Пока ленинградский материал ПП является единственным полимером, который оказался подходящим для обоих видов указанного выше ИК-ана-лиза. В приведенной литературе [4—33] отсутствуют ссылки на случаи объяснения зависимостей напряжения от дефор1ма-ции или от времени для данного материала ПП с учетом кинетики образования в нем концевых групп. [c.247]

    Феноменологическая термодинамика необратимых процессов применима главным образом к анализу химических реакций или таких изменений в открытых системах, для которых можно использовать понятия макроскопической скорости реакции и химического потенциала. При этом вычисление диссипативных функций основано на уравнениях химической кинетики, которые позволяют производить совместный кинетико-термодинамический анализ динамической эволюции реакционноспособной системы через вычисление скоростей и движущих сил процессов. Однако большинство из сушествующих математических моделей многих каталитических, технологических и особенно биологических систем с использованием дифференциальных уравнений могут отразить лишь отдельные стороны исследуемых процессов, но не описывают сложные реакции в совокупности. Особенно это относится к физико-химическим явлениям, лежащим в основе важнейших биологических процессов роста, развития, адаптации к внешним воздействиям и эволюции живых структур. [c.394]

    Реакции в гетерогенных системах на поверхности раздела фаз могут существенно осложняться, поскольку дополнительно накладывается ряд таких факторов, как площадь поверхности фазы (ад-сорбет а, носителя), ее структура и свойства, величина пор, скорость дифс1)узии и другие макроскопические явления, рассматриваемые в макроскопической кинетике (макрокинетике). При определении скорости гетерогенной реакции в специальных исследованиях все это учитывается. Скорость гетерогенной реакции в первом приближении, например, может быть оценена по количеству вещества, вступившего в реакцию (или образовавшегося при реакции) за единицу времени на единице поверхности фазы  [c.168]

    Пособие содержит изложение основных понятий, законов и методов физической химии, необходимых для углубленного и ускоренного усвоения неорганической, органической и биологической химии. Книга состоит из 2-х частей. Первая посвящена рассмотрению строения и состояния вещества, причем материал излагается в рамках единого подхода к вещсству как к. системе из взаимодействующих электронов и ядер, из которых образуются молекулы, а затем и макроскопические системы. Строго и достаточно просто разбирается ряд пс1Ложений квантовой механики и статистической физики, на которых базируется изучение строения и состояния вещества в современной химии. Во второй части рассмотрены термодинамика и кинетика химических процессов. [c.335]

    Итак, переход от истинной кинетики реакции в пористых катализаторах к кажущейся (макроскопической) кинетике сопровождается значительным уменьшением энергии активации тем не менее этот факт не является однозначным признаком внутриди4)фу- [c.90]

    Кинетика действия эндодеполимеразы взаимосвязь микроскопических и макроскопических параметров [c.107]

    Статистичшшй. мегпод осно на учении о молеку-лярной природе тел. позволяющем связать, макроскопические свойства тел с микроскопическими свойствами молекул. Представление о телах как больших коллективах частиц, подчиняющихся законам механики, позволяет объяснить ряд важных и характерных свойств тел (в учении о трех агрегатных состояниях вещества, при рассмотрении вопросов химической кинетики, химического равновесия и др.), обосновать понятия и законы термодинамики и значительно расширить область их применения. [c.6]


Смотреть страницы где упоминается термин Кинетика макроскопическая: [c.131]    [c.6]    [c.99]    [c.49]    [c.84]    [c.246]    [c.6]    [c.64]    [c.292]   
Построение математических моделей химико-технологических объектов (1970) -- [ c.17 ]

Химический энциклопедический словарь (1983) -- [ c.310 ]

Большой энциклопедический словарь Химия изд.2 (1998) -- [ c.310 ]




ПОИСК





Смотрите так же термины и статьи:

Влияние макроскопических факторов на кинетику окисления

Макроскопический и микроскопический аспекты кинетики химических реакций



© 2025 chem21.info Реклама на сайте