Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Кинетический подход

    В формально-кинетическом подходе, напротив, основное внимание концентрируется как раз на законах построения кинетической и математической модели сложного процесса и подход может быть охарактеризован как макроскопический от начала до конца. Если для физико-химика элементами являются атомы, молекулы и т. д., то для формального кинетика элементом будет сам элементарный процесс. Характеристики этого элементарного [c.5]


    Для полимеризации использование констант Kn и мольных долей компонентов теряет смысл. Разумнее использовать кинетический подход и рассматривать каждую константу равновесия как отношение констант скоростей прямой и обратной реакций, а концентрации измерять количеством молей на единицу массы реакционной смеси. [c.267]

    Традиционно для описания и анализа функционирующей реакционноспособной системы используют прямые кинетические методы, суть которых состоит в написании и решении специфической для изучаемого процесса системы дифференциальных кинетических уравнений. Очевидными достоинствами прямых кинетических подходов к описанию термодинамически неравновесных процессов являются детально отработанные алгоритмы получения и решения кинетических уравнений, удобные критерии устойчивости кинетических систем, а также возможность описания различных специфических динамических эффектов, таких как множественность стационарных состояний, возможные осцилляции скорости сложных химических реакций, предельные циклы , бифуркации, хаотические режимы протекания реакции и т.п. Следует, однако, подчеркнуть, что необходимым условием адекватности результатов, получаемых прямыми кинетическими методами, являются справедливость априорных представлений о схеме исследуемых химических превращений и достаточно точное знание констант скоростей отдельных элементарных стадий. [c.291]

    К сожалению, чисто кинетический подход не является достаточно эффективным для обобщения результатов упомянутого анализа. Действительно, химическая кинетика в некотором смысле подобна классической механике, позволяющей точно предсказать [c.291]

    Серьезным ограничением чисто кинетического подхода для анализа гетерогенных явлений представляется предельная сложность описания на кинетическом языке фазовых равновесий отдельных компонентов реакционной системы. Традиционным инструментом исследования таких явлений также служит термодинамика. [c.292]

    Термодинамический и кинетический подходы к описанию эволюции систем [c.348]

    Как уже отмечалось, очевидным достоинством прямых кинетических подходов к описанию термодинамически неравновесных процессов являются детально отработанные алгоритмы получения и решения кинетических уравнений, а также удобные процедуры анализа этих уравнений. Существенно, однако, что чисто кинетический подход эквивалентен описанию динамических свойств химической машины с жестко заданными правилами движения. При этом необходимым условием адекватности результатов, получаемых прямыми кинетическими методами, являются справедливость априорных представлений о схеме исследуемых химических превращений и достаточно точное знание констант скорости отдельных элементарных стадий. В то же время использование приемов термодинамики неравновесных процессов, выявляющих влияние движущих сил химических превращений, позволяет в ряде случаев достаточно полно предсказать динамику эволюции термодинамически неравновесной, например химически реакционноспособной, системы даже при недостаточно полном знании конкретного механизма происходящих процессов. [c.348]


    Взаимосвязь термодинамического и кинетического подходов и диаграмма механизмов разрушения полимера......... [c.7]

    Наряду с подходом, использующим механику разрушения, интенсивно развивается теория прочности на основе кинетических представлений [5 9 22 61 11.10]. Отличительной особенностью кинетического подхода является учет термофлуктуационного характера разрыва и восстановления напряженных химических связей. Напряжение увеличивает вероятность разрыва связей и уменьшает вероятность их восстановления. [c.293]

    ВЗАИМОСВЯЗЬ ТЕРМОДИНАМИЧЕСКОГО и КИНЕТИЧЕСКОГО ПОДХОДОВ И ДИАГРАММА МЕХАНИЗМОВ РАЗРУШЕНИЯ ПОЛИМЕРА [c.312]

    Таким образом, пороговое напряжение og, по Гриффиту, а следовательно, и близкое к нему пороговое напряжение а ) (см. формулу (11.16)) практически совпадают с безопасным напряжением Оо. Это значит, что термодинамический и кинетический подходы приводят к одним и тем же результатам для равновесных состояний микротрещин. Другой важный вывод заключается в том, что имеется область безопасных микротрещин (область 1 на рис. 11.11). Чем меньше напряжение, тем шире диапазон безопасных микротрещин. [c.313]

    Прочность и долговечность являются важнейшими свойствами полимерных материалов. Прочность реальных материалов не является материальной константой, так как зависит от многих факторов — времени или скорости действия нагрузки, температуры, вида напряженного состояния и др. Можно назвать две основные причины этого. Первая — существование во всех реальных материалах структурных дефектов и прежде всего микротрещин. Вторая — термофлуктуационный механизм разрыва химических связей. Соответственно этому возникли два подхода к прочности твердых тел механический и кинетический. Механический подход имеет свои достоинства и недостатки. Так, механика разрушения является основой инженерных методов расчета прочности деталей и конструкций, находящихся в сложнонапряженном состоянии. Математическая теория трещин, позволяющая рассчитывать перенапряжения вблизи микротрещины, является большим достижением механики разрушения. В то же время механический подход оставляет в стороне физические атомно-молекулярные механизмы разрушения и физическую кинетику разрушения в целом. Кинетический подход исходит из термофлуктуационного механизма разрушения, общего для всех твердых тел, в том числе и для полимеров. Суть этого механизма заключается в том, что химические связи в полимере разрываются в результате локальных тепловых флуктуаций, а приложенное напряжение увеличивает вероятность разрыва связей. [c.331]

    Развитие кинетического подхода к химическим явлениям — характерная особенность химии XX в. Прогресс химической технологии во второй половине XIX — начале XX в. в значительной степени был обязан успехам химической термодинамики. Развитие современной химической промышленности, особенно процессов гетерогенного катализа, горения, взрыва и т. д., базируется в первую очередь на достижениях химической кинетики. Поэтому кинетический подход является неотъемлемой методологической основой современной химии. [c.234]

    Главное содержание кинетических подходов к описанию процессов ферментативной деструкции полимеров, разработанных к настоящему времеии, состоит в том, чтобы связать макроскопические кинетические параметры, определенные из эксперимента, с микроскопическими, характеризующими взаимодействие субстрата и его фрагментов с активным центром фермента и его сайтами. [c.105]

    Видимо, будущее развитие кинетики ферментативных реакций СО СЛОЖНОЙ стехиометрией покажет, насколько статистическая кинетика в ее современном варианте оказалась полезной для анализа конкретных экспериментальных данных. Автор, со своей стороны, полагает, что главное достоинство статистической ферментативной кинетики заключается не столько в ее значимости для расчета формальных эмпирических коэффициентов и количественного анализа экспериментальных кинетических кривых или в ее формулах, показывающих связь микроскопических и макроскопических параметров, сколько в ее общих выводах, иллюстрирующих принципиальные закономерности ферментативной деструкции полимерных субстратов во времени. Именно на эти закономерности будет обращаться основное внимание при изложении кинетики ферментативных превращений полимеров. В заключение данного раздела будут изложены кинетические подходы к деструкции полимерных субстратов, разработанные автором с коллегами, в которых сделана попытка уйти от формализованных статистических методов математического анализа и главное внимание уделено аналитической ферментативной кинетике. [c.107]

    Согласно схеме (97) и кинетическому подходу, развитому Хироми, величина константы ассоциации Л , может быть вычислена из уравнения (14) на основе предположения о простой аддитивности аффинностей (показателей сродства) сайтов к мономерным остаткам субстрата. С другой стороны, из схемы следует выражение [c.116]


    В кинетическом подходе к гидратации, как и в термодинамическом, используется представление о координационном числе, имеющем, однако, несколько иной смысл под координационным числом нона в разбавленном водном растворе понимается среднее число молекул воды, составляющих ближайшее окружение иона. Оно может принимать дробные значения является статистической величиной, зависит от теплового и прежде всего трансляционного движения частиц. Кинетический подход развит для водных растворов и представляет в основном интерес для ионов, не слишком сильно взаимодействующих с ближайшими молекулами воды. Вместе с тем он обладает и достаточной общностью — прочное связывание ионами ближайших молекул воды можно представить как предельный случай уменьшения подвижности этих молекул. Подход к сольватации с кинетических позиций будет также справедлив при рассмотрении сольватации ионов во многих других растворителях. Основные положения кинетической [c.239]

    Рассмотренные термодинамический и кинетический подходы к сольватации не исключают друг друга, а дополняют. Правильное понимание сольватации ионов возможно лишь на основе представлений о кинетической и термодинамической устойчивости ассоциата ион — молекулы растворителя, которые описывают единый сложный процесс сольватации с разных сторон. Термодинамическая трактовка сольватации приводит к тем же выводам, что и кинетическая. [c.240]

    Развитые взгляды по-новому ставят вопрос о толковании явления ионной сольватации. Термодинамический и кинетический подходы здесь оказываются ограниченными. Во-первых, они не отражают всю совокупность изменений, происходящих при сольватации ионов. Основное внимание сосредоточивается либо на степени связанности ионом молекул растворителя, ли о на степени ограничения трансляционного движения последних в поле иона. Во-вторых, рассмотренные подходы в значительной степени основываются на разрыве и определенном противопоставлении взаимодействий ион — растворитель и растворитель — растворитель. В действительности же они теснейшим образом связаны и могут быть разделены лишь условно. И в-третьих, изложенные представления развиты для сольватации индивидуальных ионов, а не для стехиометрической смеси разноименно заряженных частиц. [c.241]

    Формулы сольватированных ионов, отвечающих названным границам, приведены в табл. 39. При этом граница раздела /—/ отвечает кинетическому подходу к сольватации II—II — делению ее на ближнюю й дальнюю и III—III—термодинамическому подходу к сольватации. .  [c.242]

    Кинетический подход основан на сопоставлении потока диффузии, частиц вверх вдоль координаты г  [c.154]

    Следует отметить, что кинетический подход оправдан при достаточно высоких температурах (Т > бд) и не очень больших напряжениях (заметно меньших, чем UJy для данного тела). [c.184]

    Разница заключается лишь в том, что при кинетическом подходе вид функциональной зависимости получается более или менее обоснованно, а при статистическом подходе этот вид функциональной зависимости задается в известной степени произвольно. [c.212]

    Традиционные методы изучения коррозионной усталости металлов базируются на определении числа нагружений или времени до разрушения циклически дефор-мируемых в коррозионной среде образцов при заданной амплитуде переменных напряжений или деформаций и построении кривых усталости в полулогарифмических или двойных логарифмических координатах. Такой подход хотя и дает ценную информацию о долговечности изделий, однако не позволяет более глубоко проанализировать стадийность разрушения. Поэтому в последние годы интенсивно ведут поиск новых кинетических подходов к оценке коррозионно-усталостного разрушения конструкционных материалов, которые базируются на законах механики разрушения, физики твердого тела, физики металлов, электрохимии и других фундаментальных наук. Рассмотрим кратко эти подходы.  [c.38]

    В заключение мы хотим подчеркнуть простоту и общность термодинамического метода в изучении устойчивости в противоположность кинетическому подходу. В последнем всегда надо оценивать знаки детерминантов (5.27) с помощью коэффициентов Срр секулярного уравнения, а это часто оказывается чрезвычайно сложной задачей. [c.68]

    Кинетический подход также демонстрирует, что величина константы равновесия изменяется прн изменении температуры. Скорость теплового движения молекул уменьшается при понижении температуры. Следовательно, реакционная способность реагирующих веществ и продуктов уменьшается и константы кг и 1(2 принимают меньшие значения. Эти эффекты температуры неодинаковы для прямой и обратной реакций, но зависят от различия энергий активации этих двух процессов. Так, при 0°С — [c.125]

    Необходимо отметить, что нелинейный, экстремальный характер зависимостей структурно-механических свойств безглинистых растворов наблюдается при изменении величины последнего, концентрации полимеров и производных целлюлозы, ПАВ, что указывает на справедливость молекулярно-кинетического подхода к объяснению механизма формирования надмолекулярной структуры в поро- [c.15]

    Тогда функция распределения Р(п) определяет начальные условия для концентраций IR( )] в различных колебательных состояниях, начиная с которых происходят дезактивационные процессы R(/i)+M->R(/i-l). Концентрации радикалов [R( )] в определенных колебательных состояниях, измеренные в относительных единицах, зависят от функции распределения f n). Это дает возможность получить информацию о Р(п), решая обратную кинетическую задачу. Этот кинетический подход бьш использован для изучения распределения колебательной энергии в реакции [c.162]

    Как видно из материала этого раздела, учет вклада растворителя открыл возможность создания единой шкалы для количественной оценки сравнительной реакционной способности фторирующих реагентов N—Р-класса. Учет этого вклада повышает точность прогнозов, так как приближает их к реальным условиям эксперимента. Разумеется, кинетические оценки по-прежнему остаются здесь "истиной в последней инстанции". Очевидно, однако, что кинетическим подходом физически невозможно охватить огромный фактический материал, накопленный в этой области. Отсюда и возникла необходимость в разработке приемлемого критерия фторирующей способности, который позволял бы оперативно, в реалистические сроки, оценивать широкий круг фторирующих реагентов с выдачей необходимых рекомендаций синтетикам и технологам. [c.145]

    Так, сложность расчета коэффициента перевала в теории активированного комплекса (физико-химический подход) в формально-кинетическом подходе выражается в проблеме выбора уровня доверительного интервала, а в естественно-механическом — в факте псевдопотенциальности системы проблема выбора механизма сложного процесса (физико-химический подход) — это проблема [c.7]

    Переход от микроскопии элементарного процесса к макроскопии сложного химического процесса, характеризующегося одновременным протеканием множества элементарных стадий,— самое тонкое место всего исследования, требующее знания как конкретных значений кинетических параметров отдельных элементарных стадий, так и правил их взаимной увязки. Концентрируясь на решении последней задачи, кинетик часто рассматривает весь физико-химическйй подход под весьма специфическим углом зрения как потребитель значений кинетических параметров. Однако, если для физикохимика расчет значений кинетических параметров — одна из основных задач исследования, то для формального кинетика эти значения — лишь начальные приближения. В ходе формально-кинетического анализа происходит непрерывное уточнение и механизма сложного процесса, и значений кинетических параметро 1. В этом смысле формально-кинетический подход скорее не альтернатива физико-химическому, а его логическое продолжение на макроскопическом уровне. [c.104]

    Современное состояние теории псевдоожижения отражено в книгах [1—3]. Для описания кипящего слоя в принципе могли бы быть использованы классические модели механики сплошных сред, однако строгая постановка гидродинамической задачи, включающей в себя уравнения Навье — Стокса совместно с уравнениями движения частиц с соответствующими начальными и граничными условиями, оказывается чрезвычайно сложной. Поэтому прибегают к построению менее детального, сокращенного описания динамики дисперсных систем, т. е. к построению макромоделей дисперсных систем. На этом пути созданы основы механической теории псевдоожиженпого состояния исходя из кинетического подхода [4], метода осреднения, метода взаимопроникающих континуумов [3]. Однако это только основы, применимые к упрощенным, идеализированным ситуациям. Для использования теоретических моделей в практических расчетах нужны еще большие и целенаправленные усилия теоретиков и экспериментаторов. Направление исследований определяется конкретной целью. В частности, при разработке каталитического реактора требуется не только умение удовлетворительно рассчитать поля концентраций и температур, по и обеспечить достаточное приближение к оптимальному режиму. Вследствие сильной структурной неоднородности кипящего слоя такое приближение часто оказывается невозмон ным. Перед этой трудностью отступает на второй план задача точного расчета полей температур и концентраций. Хороший расчет плохо работающего реактора имеет сомнительную ценность. Прежде всего, необходимо активное воздействие на структуру слоя с целью достижения приемлемой степени однородности и интенсивности контактирования газа с катализатором. Необходимая степень однородности кипящего слоя определяется кинетикой конкретного каталитического процесса и может сильно отличаться от случая к случаю. Это определяет выбор средств воздействия на структуру слоя горизонтальное или вертикальное секционирование, добавление мелкой фракции, размещение малообъемной насадки [5]. В частности, только последнее из [c.44]

    Кинетический подход, основателем которого является акад. С. Н. Журков [11.10 61], отличается тем, что основное внимание обращается на атомно-молекулярный процесс разрушения и разрыв тела рассматривается как конечный результат постепенного развития и накопления микроразрушений или как процесс развития микротрещины на молекулярном уровне. Основным фактором в этом подходе является тепловое движение в полимерах. Выяснение природы этого термофлуктуационного процесса разрушения, зависимости скорости процесса и долговечности от температуры, напряжения и других факторов является основой современной физической теории прочности и базой для дальнейшего развития теорий предельного состояния в механике разрушения. Эти подходы будут в дальнейшем рассмотрены подробней. [c.287]

    Учтем, что при а = ао скорость роста микротрещины бесконечно мала и потери первого и второго вида равны нулю. Поэтому упругая энергия химической связи при ее разрыве переходит в свободную поверхностную энергию и затрачивается на поверхностные потери третьего вида брз. Таким образом, в основе определения безопасного напряжения при кинетическом подходе, как и при термодинамическом подходе, лежит баланс энергии при разрушении. Так как при разрыве химической связи полимерной цепи образуются две новые микроплощадки свободной поверхно.сти площадью лЯл, то [c.311]

    Таким образом, как термодинамический, так и кинетический подходы к процессу разрушения и термофлуктуационная теория прочности хрупких твердых тел приводят к выводу о сушествова-нии безопасного напряжения, для расчета которого при одноосном растяжении предложены уравнения (11.42) и (11.43), а для сложнонапряженного состояния — уравнение (11.44), а также к диаграмме механизмов разрушения, показанной на рис. 11.11, где приводятся границы существования безопасных напряжений, термофлуктуационного и атермического разрушения в зависимости от размеров начальных микротрещин в материале. На основании этих уравнений может быть определен критерий оценки безопасных микротрещин в хрупких твердых телах. Порог разрушения по Гриффиту аа ° соответствует безопасному напряженую оо, а не критическому (Тк, как это считалось до сих пор общепринятым. [c.314]

    Термодинамический и кинетический подходы. В истолковании явления сольватации имеются два подхода. Один из них называется термодинамической сольватацией. Он основан на преимущественном учете взаимодействий ион— растворитель и предполагает, что при сольватации ионы прочно связывают определенное число молекул растворителя. Это число называется сольватацион-ным (в случае водных растворов — гидратационным). Для количественной характеристики сольватационные числа не всегда применимы, так как они в значительной степени зависят от методов их определения. Достаточно указать, например, что, по данным различных авторов, гидратационные числа для иона Li+ изменяются от 158 до 4, для иона Са + —от 16 до 6 для иона АР+ — от 39 до 6 и т. д. Более определенный смысл имеет число молекул растворителя, составляющих непосредственное окружение иона (координационное число). Оно служит одной из важнейших количественных характеристик процесса сольватации. Координационное число зависит от природы сольватирующихся частиц, их концентрации и т. д. Обсуждаемый подход к сольватации на основе преимущественной роли взаимодействия ион — растворитель связан с представлениями о термодинамической устойчивости ас-социата ион — молекулы растворителя, мерой которой является общая энергия взаимодействия между ними. [c.238]

    Для исследования химического сопротивления полимерных материалов необходимо глубокое изучение закономерностей и механизмов протекающих процессов механическими, физическими, химическими, структурными и другими методами. Работосиособиость пластмасс с различными механическими и реологическими свойствами для изготовления силовых конструкций, применяемых в химическом аппаратостроеиии, должна прогнозироваться либо по предельно допустимым напряжениям, либо ио предельно допустимым деформациям. Для материалов на полимерной основе вр>еменная зависимость прочности и ползучести имеет ярко выраженный характер, что говорит в пользу кинетического подхода к исследованию процессов деформации и разрушения. [c.43]

    Большинство изучаемых в природе термодина.ушческих систем -открытые системы, т е, способные обмениваться энергией с внешней средой. Классическая термодинамика рассматривает в основном равновесные состояния системы, в которых параметры не изменяются во вре.мени. В открытых же системах реакции и соответствутощие энергетические превращения происходят постоянно, поэтому нужно знать скорости трансфор.мации энергии в каждый момент времени. Это значит, что в энергетических расчетах нужно учитывать фактор времени, для чего необходимо сочетать термодина.мический и кинетический подходы к описанию свойств открытой системы. Проблема заключается в том, чтобы понять, как связано изменение энтропии с параметрами процессов в открытой системе и выяснить, можно ли предсказать общее направление необратимых процессов в открытой системе по изменению ее энтропии. Главная трудность при решении этой проблемы состоит в том, что необходимо учитьшать изменение всех термодинамических величин во времени непосредственно в ходе процессов в открытой системе. [c.65]

    Таким образом, использование кинетического подхода не только твенно ускоряет процесс определения восстановительной (окис-яьной) емкости твердого редоксита, но и позволяет получить (й комплекс характеристик его окислительно-восстановительного ояния. [c.159]


Смотреть страницы где упоминается термин Кинетический подход: [c.6]    [c.8]    [c.104]    [c.101]    [c.280]    [c.294]    [c.148]    [c.64]    [c.512]   
Смотреть главы в:

Кинетика гетерогенных процессов -> Кинетический подход

Стереодифференцирующие реакции -> Кинетический подход




ПОИСК





Смотрите так же термины и статьи:

Подход



© 2025 chem21.info Реклама на сайте