Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

окиси комплексы

    В некоторых ситуациях (см. далее) необходимы системы с исключительно псевдоконтактным вкладом в изотропный сдвиг. N-окись пиридина относится к числу именно таких лигандов, которые обеспечивают псевдоконтактный вклад в сдвиг [28]. Если в комплексе определяющую роль играет а-делокализация и контактная и псевдоконтактная части сдвигов меняются одинаковым образом, то отсутствие контактных вкладов установить трудно. Однако при использовании такого лиганда, как N-окись пиридина, альтернирование протонных сдвигов, обусловленное узлами в я-системе, свидетельствует об определяющей роли контактного сдвига. [c.185]


    Окись углерода входит в большое число различных комплексов переходных металлов (разд. П.1.В) и стабилизует низшие степени окисления этих металлов. Карбонилы металлов образуются либо путем прямого воздействия СО на мелкодисперсные металлы  [c.193]

    Проба 1 была отобрана 16/ХИ 1975 г. из истоков лавовой реки в 400 м от конуса, а проба 2 отобрана 22/ХП 1975 г. в 1000 м от конуса. Окись углерода в газах обнаружена не была. Концентрация С1 намного превышала концентрацию Количество ЗЮг и СОг сопоставимо с содержанием С1 . Таким образом, отмечает В. И. Смирнов, налицо все компоненты для возникновения хлоридных, сернистых и углекислых комплексов. [c.142]

    Пп— признак противоточности в первом ряду комплекса. Первым считается ряд аппаратов (элементов) по ходу теплоносителя, отдающего тепло, начиная с он, т. е. от входа этого теплоносителя Пп = О — общий прямоток теплоносителей в первом ряду (/он, /ви — в одном, первом элементе (аппарате) первого ряда или /ок, вк — в крайних элементах (аппарата.х) первого ряда), Пп = 1 — общий противоток теплоносителей в первом ряду (/он, вк — в одном, первом элементе (аппарате) первого ряда нли /о , вн — в крайних элементах (аппаратах) первого ряда). [c.25]

    В первом члене уравнения (4,11) верхний знак и нижний предел (4-, ок) соответствуют противотоку, нижние знак и предел (—, /он) — прямотоку. Запись основного уравнения теплового расчета для сложных схем тока и компоновок более громоздка. Однако состав величин, определяющих содержание расчетов, тот же, что и при противотоке (прямотоке). Добавляются лишь величины, характеризующие схему тока в отдельном элементе (индексе противоточности р), тип и схему комплекса (признак противоточности в ряду элементов Пп, признаки реверса теплоносителей Про, Прв, число параллельных рядов и, число элементов в ряду Пр). Более подробно эти величины объяснены в главах 1, 6 — 8. [c.60]

    Уравнения связи для ряда элементов аналогичны уравнениям связи для элемента. Модель статическая. Специфика ее заключается в том, что/он, ок, вн, /вк — температуры на концах ряда, а не элемента. Согласно (7,1) и (7,2), безразмерный температурный комплекс [c.166]

    При известной величине Фэ для расчета любой пары температур сред на концах комплекса из ряда (/ои, /ок. /вн. /вк) используются уравнения связи (8,63) и (8,64), полученные из (8,1) и (8,2). Они по форме совпадают с уравнениями связи (6,147), [c.210]


    Стабильность катализатора — это сохранение активности и избирательности его в процессе периодически повторяющихся циклов крекинг — регенерация. Высокая температура, присутствие паров воды, наличие некоторых металлов резко снижают стабильность катализатора. Как правило, при незначительном содержании паров воды промышленные катализаторы до 600° С стабильны. Преобладающий размер пор катализатора 50—100 А и удельная поверхность до 600 м /г. Эта пористая структура разрушается нри высокой температуре в присутствии водяных паров. Размер пор возрастает, удельная поверхность уменьшается. При этом изменяется и характер поверхности катализатора. Алюмосиликатный комплекс, который является активным центром катализатора, разлагается на окись алюминия и двуокись кремния, не обладающие каталитической активностью. Тяжелые металлы при наличии в исходном сырье серы значительно изменяют селективность катализатора в сторону образования как газообразных продуктов (водорода, метана) так и кокса. [c.237]

    Однако во всех случаях должна сохраняться прямолинейная последовательность расположения производственных объектов автономного комплекса (рис. 49). В дальнейшем возможна еще большая специализация заводов и соответственно могут измениться состав и структура технологических комплексов. Например, могут строиться предприятия, выпускающие только один головной продукт (хлор, окись этилена, аммиак и т. п.), который будет поступать на дальнейшую переработку на другие заводы, где в структуре автономных комплексов не будет головного производства. [c.66]

    Наряду с газофазным окислением этилена в окись этилена известны методы жидкофазного синтеза. В частности, предложено использовать ртутно-этиленовый комплекс, гидролизуемый в окись этилена или окислять этилен в растворе дибутилфталата на Си- или Ад-катализаторе. [c.283]

    Хроматографию твердых парафиновых углеводородов, регенерированных из карбамидного комплекса, проводили в трехсекционной стеклянной колонке высотой 3 м. Высота каждой секции 1 м диаметры верхней 20, средней 15 и нижней 8 мм. Адсорбентами служили активированные силикагель крупнопористый, березовый уголь и окись алюминия. В качестве десорбирующих жидкостей применялись дихлорэтан, н-гексан, петролейный эфир, ацетон, бензол, этиловый эфир и их смеси. Адсорбенты загружали в такой последовательности активированный уголь (120 г), окись алюминия (120 г) и силикагель (50 г). Самый верхний слой колонки составляла смесь парафина с силикагелем (4,8 г парафина и 10 г силикагеля). Результаты хроматографирования и свойства полученных узких фракций парафина приведены в табл. 15. [c.87]

    Рассмотрен опыт разработки и внедрения АСУ ТП Ок-тан-М , созданной на базе современных пневматических комплексов технических средств и управляющего вычислительного комплекса и предназначенной для управления установками каталитического крекинга большой мощности. [c.4]

    Кислотной функцией обладает носитель катализатора — окись алюминия. Кислотными свойствами катализатора определяется его крекирующая и изомеризующая активность. Эти свойства особенно важны при переработке сырья с большим содержанием парафиновых углеводородов (инициировании реакций гидрокрекинга и изомеризации парафинов, а также гидроизомеризации пятичленных нафтенов в шестичленные, что при последующем их дегидрировании приводит к образованию ароматических углеводородов). Для усиления кислотной функции катализатора в его состав вводят галоген. В последнее время с этой целью чаще применяют хлор, раньше и изредка сейчас —фтор, который также стабилизирует высокую дисперсность платины, образуя комплексы с ней и окисью алюминия. Преимущества хлора в том, что он в меньшей мере способствует реакциям крекинга это особенно важно в условиях жесткого режима. [c.139]

    Большинство исследователей пришло к выводу, что окись и двуокись углерода являются первичными продуктами окисления углерода при хемосорбции. Установлено, что кислород никогда не может быть десорбирован в чистом виде. Сорбционный механизм взаимодействия кислорода с углеродом может быть представлен следующей приближенной схемой. Атомы кислорода, находящиеся вблизи углеродной поверхности, адсорбируются на поверхности и удерживаются на ней за счет химических сил. При этом происходит более глубокое объединение атомов кислорода и углерода с образованием сложных гипотетических соединений типа С Оу Этот комплекс распадается по истечении некоторого времени с выделением СО и СОз. Стадии протекания этого процесса могут быть представлены следующим образом  [c.143]

    Ок"аэдрические комплексы в основном состоянии имеют семь [c.511]

    Окись углерода. В присутствии безводного хлористого алюминия (или лучше бромистого алюминия) при давлениях от 100 до 150 ат и при низких температурах окись углерода реагирует с простыми парафинами, давая кетоны. Как и в приведенных выше примерах реакций с хлористым алюминием, w-парафины дают разветвленные кетоны. Так, я-бутан и изобутап дают метилизопропилкетон, а пентан и изопентан — этилизо-пропилкетон, причем, по-видимому, группа СО сама внедряется в углеродную цепь. Высказано предположение (1936 г.), что окись углерода может реагировать в виде комплекса СО и НС1 с хлористым алюминием, образуя сначала альдегид, который затем изомеризуется в кетон. В подтверждение этого предположения указывалось, что триметилацетальдегид изомеризуется хлористым алюминием в метилизопропилкетон, следовательно, реакция изобутана с СО может быть эмпирически представлена как [c.95]


    Сильные кислоты способны отдавать протоны реагентам и принимать их обратно. К этому классу относятся обычные кислоты, галоиды алюминия, три< орид бора. Аналогичным механизмом каталитического воздействия обладают такие катализаторы, как алюмосиликаты, гамма-окись алюминия, магнийсили-каты, цирконийсиликат и подобные соединения, хотя вопрос о кислотном характере указанных соединений является спорным. Эти реакции происходят с образованием карбоний-ионного комплекса, возникающего путем перехода протона от катализатора к свободной электронной паре в органическом реагенте. В зависимости от условий реакции карбоний-ионный комплекс может взаимодействовать по реакциям алкилирования, крекинга, циклизации, перераспределения водорода, изомеризации, полимеризации и др. [c.312]

    Проследить связь между окраской комплекса иона переходного ме-тал.та, обусловленной d — -переходом, и Dq проще всего на примере -комплекса, например комплекса Ti " в октаэдрическом поле. Основное состояние свободного иона описывается термом О, и, как указывалось ранее, вырожденные -уровни расщепляются октаэдрическим полем на совокупность из трехкратно вырожденного -состояния и двукратно вырожденного Е -состояния. Расщеп.тение составляет 10 Dq (рис. 10.7). С увеличением Dq возрастает и энергия АЕ (а следовательно, и частота) перехода. Тангенс угла наклона линий п Е составляет соответственно -ADq и + 6Dq. Величину А (см ) можно получить непосредственно из частоты полосы поглощения. Например,. максимум полосы поглощения Ti(H,0)g лежит при 5000 А (20000 см ). Величина А для воды, связанной с Ti , составляет око.ю 20000 см (Dq равно 2000 см ). Поскольку этот переход происходит с поглощением желто-зеленой компоненты видимого света, пропущенный свет пурпурный (голубой + + красный). При изменении лиганда меняется и окраска комплекса. Цвет раствора дополнителен к поглощенному (или поглощенным) цвету, поскольку окраску определяют линии пропускания. Визуально на- [c.89]

    В заключение, чгобы показать, насколько важны приближенные волновые функции при интерпретации контактных сдвигов, мы рассмотрим сдвиги в спектрах некоторых комплексов N-окиси 4-метилпиридина [27]. Картина наблюдаемых протонных контактных сдвигов напоминает механизм тг-делокализации со спином, направленным в тс-сис-теме вдоль поля. Исходя из этих сдвигов, можно сделать вывод, что при координации N-окись 4-метилпиридина должна вращаться таким образом, чтобы я-молекулярная орбиталь, которая представляет собой главным образом р -орбиталь кислорода (ось г перпендикулярна плоскости цикла), смещталась с ст-связывающей -совокупностью нике-ля(П), Это приводит к возможности прямой делокализации неспаренного спина по орбитали цикла . Такой тип координации с вращением донора обнаружен в твердом аддукте этого донора. Расчет по методу МО указывает, что некоторые из высокоэнергетических молекулярных орбиталей донора представляют собой главным образом АО кислорода с очень небольщими коэффициентами АО водорода. Таким образом, если даже эти молекулярные орбитали участвуют в связывании с пике-лем(П), они должны давать по крайней мере небольшой непосредственный вклад в протонные контактные сдвиги. [c.185]

    Рассмотрим окись хрома, СГ2О3. В объеме твердой СГ2О3 катионы Сг " , октаэдрически окруженные шестью анионами (структура алунда), физически идентичны центральным катионам октаэдрических Сг " -комплексов в растворе. Но на поверхности кристалла могут появляться ионы хрома с различными зарядами и координационным числом, образующиеся путем следующего механизма. [c.25]

    Уравнения связп этих комплексов те же, что у комплексов 00110, 00100 a/o,- M. (8,5), 8/о, —см (8,6), /ок / (8,7), /он (8,8), /вн(/+1) (8,9), BHI (8,10), Ito (8,11), Ъи (8,12). Специфика комплексов 00210, 00200 в том, что у них [c.189]

    Примером зеркальных изомеров являются комплексы хрома (П1), содержащие две молекулы этиленднамина. Координацион ное число Сг+ равно 6 лиганды располагаются по верщинам ок- таэдра, в центре которого находится ион Сг+ Молекула этилеН диамина, имеющая изогнутую форму, присоединяется к Сг+ двумя группами ЫНа (как уже указывалось, она занимает дйа координационных места). При наличии в октаэдрическом комплексе двух молекул этиленднамина возможны два варианта структуры, показанные на рис. 1.58 эти формы относятся друг к другу, как предмет к своему зеркальному изображению. [c.119]

    Кислотную функцию в алюмон/атиновом катализаторе выполняет окись алюминия. Она определяет активность катализатора в реакциях изомеризации и гидрокрекинга. Для усиления кислотности в окись алюминия вводят 0,3% фтора или 0,5—2% хлора. Более высокое содержание галогена значительно повышает крекирующие свойства катализатора и приводит к увеличению выхода газа. Применение хлора в качест]1о промотора имеет некоторое преимущество перед использованием фтора. Хлор в меньшей мере способствует реакциям крекинга и, кроме того, стабилизирует высокую дисперсность платины за сче" образования комплекса с платиной и окисью алюминия. [c.256]

    Окись алюминия и двуокись кремния, которые получаются при разложении калийных комплексов, реагируют с окисью магния и кальция, образуя шпинели и такие соединения, как монтеселит a0 Mg0 S 02. Окись магния добавляется в катализатор именно с этой целью, а также вследствие ее тугоплавкости. Всегда, даже в свежем катализаторе, окись магния находится в связанном виде, и поэтому гидратация ее паром высокого давления не создает трудностей..  [c.101]

    Для риформинга нафты под давлением могут быть предложены другие катализаторы, в которых никель нанесен на щелочнь е материалы (окись магния или окисные алюмо-магниевые шпинели). После обработки щелочью такие катализаторы будут работать при низких соотношениях пар углерод, в некотором смысле аналогично катализатору 46-1. Однако они будут работать так только в течение относительно короткого пробега. После одного или двух месяцев пробега на них начинается образование углерода. Комплексы, которые обеспечивают медленное выделение щелочи из катализатора 46-1, в этих катализаторах не образуются. Вместо этого щелочь выдeляef я в течение коро Е.кого времени со значительно более высокой скоростью, чем это необходимо для предупреждения образования углерода. В результате катализатор быстро теряет щелочь и начинается образование углерода. [c.101]

    Скорость процесса контролируется взаимодействием метана с адсорбированным на катализаторе кислородом и тормозится десорбирующимся водородом. Стадия (I) не является лимитирующей. Окисление активных центров происходит быстро с образованием промежуточного соединения, обладающего слабыми основныш свойствами. Меаду подвижным водородным атомом метана и промежуточным соединением устанавливается водородная связь. Вследствие большого сродства водорода к никелю протон, принимающий участие в водородной связи,смещается к атому никеля. В результате разрядки протона на поверхности кристаллического никеля образовавшийся комплекс атомов разлагается на окись углерода, водород и окись никеля. Распад промежуточного соединения не является стадией, контролирующей скорость процесса, о чем свидетельствует большой экзотермический эффект его образования /27/. [c.49]

    Как показали работы М. М. Дубинина и его сотрудников [60, 61 ], при физической адсорбции на поверхности полярных адсорбентов, к которым относятся природные отбеливающие земли, силикагель, синтетические алюмосиликаты, активированная окись алюминия и др., основную роль играют ориентационное и индукционное взаимодействия. Молекулы этих адсорбентов, состоят в основном из окислов кремния и алюминия с включением конституционной и кристаллизационной воды, а в природных адсорбентах также из окислов других металлов. Структурные решетки этих адсорбентов образованы ионами , А " ", Мд " , 0 , ОН или комплексами (310 ) , (А1О4) и т. д. Ионы, лежащие на поверхности адсорбента, хотя в химическом отношении и уравновешены связанными с ними ионами противоположного заряда, находящимися в массе адсорбента, обладают электростатическими зарядами, силовые поля которых лишь частично скомпенсированы внутренними ионами. Нескомпенсированные силовые поля по- [c.234]

    Полнота взаимодействия исходных реагентов зависи от их реакционной способности и y Jroвий проведения ре и ции. В целом химические свойства образующегося комплекс , еще далеки от свойств готового катализатора. Его нримерн . состав (% масс.) ОК — 54.6 СК 38.8 ХСВ 17.0. [c.49]

    Таким образом, исследования показа]ш, что в процессе жсплуатации катализаторов на основе силикафосфатного комплекса (различные модификации "ФКД", С-84-3, фирмы "UOP") сун4сственно изменяемся тольк( доля СК и ХСВ при относительном постоянстве содержаття ОК. Что же касается состава катализаторов, близких по условиям синтеза к ката- [c.79]

    При высокотемпературно термообработке катализатора происходит некоторое снижение содержания в нем ОК. Известно, что содержание ОК в катализаторах на основе силикафосфатного комплекса оказывает су1цес1вениое влияние на их прочность и стабильность. Поэтому предварительно было исследовано влияние соотношения исходных реагентов на стадии синтеза катализатора, а также ряда других технологи- [c.123]

    Тот факт, что в смолах и асфальтенах сконцентрированы значительная часть серы, большая часть кислорода и азота и практически полностью металлы, в том числе наиболее ши])око предстанленные в нефтях ванадий и никель, свидетельствует о значительной роли гетероатомов в строении их молекул. Об этом же говорит и сосредоточение норфиринов в смолисто-асфальтеновой части сырых пефтей. Несомненно, что значительная часть содержащихся в нефтях металлов, и прежде всего ванадия и никеля, входит в состав норфириновых комплексов. Об этом, в частности, говорит наблюдаемый параллелизм в содержании ванадия, никеля и норфириновых комплексов. [c.367]


Смотреть страницы где упоминается термин окиси комплексы: [c.7]    [c.90]    [c.108]    [c.108]    [c.108]    [c.508]    [c.11]    [c.21]    [c.113]    [c.373]    [c.201]    [c.203]    [c.23]    [c.157]    [c.100]    [c.65]    [c.321]    [c.12]    [c.113]    [c.209]   
Гетероциклические соединения, Том 7 (1961) -- [ c.269 , c.287 , c.290 ]




ПОИСК







© 2024 chem21.info Реклама на сайте