Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Характер поверхности катализатора

    Стратегию принятия решений при поиске оптимальной пористой структуры катализаторов необходимо строить с учетом важнейших качественных закономерностей, определяющих взаимосвязь между активностью катализатора и характером строения его пор. Нанример, при низкой удельной активности рекомендуется попользовать катализаторы с монодисперсной структурой и развитой внутренней поверхностью. Для катализаторов с высокой удельной активностью при низких и средних давлениях следует стремиться к созданию бидисперсной структуры, сочетающей наличие узких и широких пор. Широкие поры призваны обеспечивать перенос реагирующих веществ вглубь зерна и более полное использование внутренней поверхности катализатора с развитой системой узких пор. [c.119]


    Несмотря на различный механизм превращения парафиновых углеводородов на всех рассмотренных катализаторах, для них наблюдается общность кинетических закономерностей и торможение реакции изомеризации парафиновых углеводородов избытком водорода. Для всех катализаторов зависимость скорости реакции от парциального давления водорода носит экстремальный характер после достижения определенной концентрации водорода на поверхности катализатора. Величина и положение максимума зависят от типа катализатора, температуры и молекулярной массы парафинового углеводорода. [c.35]

    Стабильность катализатора — это сохранение активности и избирательности его в процессе периодически повторяющихся циклов крекинг — регенерация. Высокая температура, присутствие паров воды, наличие некоторых металлов резко снижают стабильность катализатора. Как правило, при незначительном содержании паров воды промышленные катализаторы до 600° С стабильны. Преобладающий размер пор катализатора 50—100 А и удельная поверхность до 600 м /г. Эта пористая структура разрушается нри высокой температуре в присутствии водяных паров. Размер пор возрастает, удельная поверхность уменьшается. При этом изменяется и характер поверхности катализатора. Алюмосиликатный комплекс, который является активным центром катализатора, разлагается на окись алюминия и двуокись кремния, не обладающие каталитической активностью. Тяжелые металлы при наличии в исходном сырье серы значительно изменяют селективность катализатора в сторону образования как газообразных продуктов (водорода, метана) так и кокса. [c.237]

    Характер поверхности катализатора влияет на структуру возникающей микромолекулы. Например, изотактические поли-а-оле-фины получаются только на гетерогенных каталитических системах. Образование полимерных цепей на гетерогенных катализаторах включает следующие стадии диффузию мономера к поверхности катализатора, адсорбцию мономера на поверхности катализатора и присоединение мономерного звена по связи углерод—металл каталитического комплекса. [c.234]

    Исследование отравления и изучение характера поверхности катализаторов. [c.121]

    Появление затем более точных методов определения характера поверхности катализаторов позволило установить, что удельная активность катализатора, отнесенная к единице поверхности, зависит от химического состава и почти не зависит от структурных отклонений. Под активностью катализатора понимают количество вещества (в молях), реагирующего в единицу времени под воздействием единицы массы катализатора. [c.208]


    В соответствии с принятой гипотезой о механизме реакции, включающей также и предположение об энергетическом характере поверхности катализатора, скорости элементарных реакций определяются с помощью закона действия поверхностей. Согласно условию стационарности стадий, связь между скоростями элементарной реакции и скоростями по маршрутам определяется уравнением [c.111]

    IV. ХАРАКТЕР ПОВЕРХНОСТИ КАТАЛИЗАТОРА [c.342]

    Таким образом, можно констатировать, что на селективность Сб-дегидроциклизации н-гептана по направлениям 1 и 2 влияет не только характер адсорбции н-гептана, но и относительная концентрация водорода на поверхности катализатора. Из сказанного выше становится очевидным, что использование представлений секстетно-дублетного механизма оказалось плодотворным для предсказания и объяснения ряда результатов в ходе протекания реакций Сб-дегидроциклизации алканов и гидрогенолиза циклопентанов. [c.219]

    Таким образом, оптимальное заполнение поверхности катализатора водородом является результатом действия эффектов противоположного характера. При этом следует особо подчеркнуть, что структура катализатора формируется в ходе реакции в результате его взаимодействия с компонентами реакционной среды. Следовательно, на формирование структуры реально действующего катализатора в процессе обсуждаемых реакций влияют и углеводороды, и водород. Селективность действия подобных каталитических систем можно в определенных пределах регулировать путем подбора парциального давления водорода. [c.229]

    Несколько отличный механизм отравляющего действия сероводорода можно предположить на хлорированных алюмоплатиновых катализаторах низкотемпературной изомеризации. Известно, что хлорированный 17-оксид алюминия способен изомеризовать парафиновые углеводороды с высокой начальной активностью даже при отсутствии платины [91, 101]. Диссоциативная адсорбция сероводорода донорно-акцепторными центрами хлорированного оксида алюминия должна снижать кислотность поверхности катализатора. Подобный характер взаимодействия Н2 5 с поверхностью прокаленного оксида алюминия отмечался в литературе [102]. Непрочность подобной связи обуславливает возможность восстановления активности катализаторов низкотемпературной изомери- [c.88]

    При проведении окислительной конверсии с циркулирующим пылевидным катализатором за счет большего отношения катализатор/сырье и большей суммарной поверхности катализатора интенсивность процесса значительно новы-шается. для пылевидного железоокисного катализатора (табл. 3.5) наблюдается более низкое содержание коксовых отложений и высокое соотношение 5/С по сравнению с гранулированным. С увеличением времени циркуляции пылевидного катализатора (рис. 3.9) и уменьшением температуры процесса снижается содержание углерода в составе коксовых отложений и растет отношение 5/С как для закоксованного, так и для регенерированного катализатора, что, в свою очередь, подтверждает селективный характер окисления элементов коксовых отложений на катализаторах оксид- [c.93]

    Способы оценки стабильности каталитической активности основаны преимущественно на высокотемпературной обработке катализаторов крекинга водяным паром, которая приводит к уменьшению их удельной поверхности и активности. Для такого рода испытаний во ВНИИ НП была разработана ускоренная методика, хорошо моделирующая характер отравления катализаторов в промышленных условиях . [c.166]

    Этапы 1, 2, 6 и 7 имеют физический характер, 3, 5 могут иметь как физический, так и химический характер. Обычно считается, . что на поверхности катализатора [c.110]

    Разработка современного высокоэффективного контактно-каталитического промышленного процесса немыслима без реализации разветвленной многоэтапной процедуры принятия решений многоцелевого характера, начиная с исследования элементарных актов химического взаимодействия, установления механизма и кинетики каталитических реакций на элементах твердой поверхности катализатора и кончая созданием технологически и экономически оптимальных контактных аппаратов большой мощности. [c.9]

    Измерения адсорбции нз растворов менее трудоемки. Однако из-за наличия конкуренции молекул адсорбата и растворителя получающиеся зависимости имеют сложный характер, что сильно усложняет теоретическую трактовку и обработку результатов. Поэтому на практике измерения поверхности катализаторов проводят в основном путем сравнения, т. е. одновременно испытывая анализируемые и эталонные образцы в одних и тех же растворах. Так, для алюмосиликатного катализатора в качестве такого раствора чаще всего используют смесь адсорбата — толуола с изооктаном в объемном соотно-шегши 3 7. [c.87]


    Для активности катализаторов важно не только наличие активных центров, но число их и характер расположения. Чем больше геометрическое соответствие между расположением атомов в адсорбируемых молекулах исходных веществ и расположением активных центров на поверхности катализатора, тем активнее последний. Геометрическое соответствие проявляется в близости значений межатомных расстояний в кристаллической решетке катализатора и молекулах реагента (реагентов), а также в сходном расположении атомов в решетке и молекулах, что обеспечивает интенсивное взаимодействие реагента с катализатором при адсорбции. Если число активных центров или же их расположение (по их рисунку или по расстояниям между ними) не соответствует структуре молекул реагирующих веществ, процесс ускоряться не будет. Роль промоторов сводится главным образом к доукомплектованию активных центров. [c.226]

    Представляется существенным не только наличие активных центров, но число их и характер расположения. Чем больше геометрическое соответствие между расположением атомов в адсорбируемых молекулах исходных веществ и расположением активных центров на поверхности катализатора, тем активнее последний. Если число активных центров или же их расположение (по рисунку или по расстояниям между ними) не соответствует структуре молекул реагирующих веществ, процесс ускоряться не будет. Из этого следует существенное значение энтропийного фактора в гетерогенном катализе. Роль промоторов сводится, главным образом, к доукомплектованию активных центров. [c.125]

    Влияние металлов на регенерацию катализатора. Металлы, накапливающиеся в процессе работы на поверхности катализатора, должны оказывать определенное влияние и на процесс выжига кокса. Так, на одной установке, долго работавшей на остаточном сырье, при увеличении на катализаторе содержания никеля от 6-10 2 до 7-10 2 вес. %, а ванадия от 3,5-10-2 до 18-10-2 вес. % содержание остаточного (после выжига) кокса уменьшалось с 0,4 до 0,2 вес. % После прекращения подачи остаточного сырья и существенного уменьшения количества металлов содержание остаточного кокса возросло до 0,3 вес. % [186]. О влиянии некоторых металлов на выжиг коксовых отложений с катализатора в литературе имеются лишь отрывочные данные [78, 238—241]. Для получения более полных данных нами были проведены эксперименты на аппарате ГрозНИИ в кинетической (500 °С) и диффузионной (650 °С) областях при удельном расходе воздуха 1500 ч . Во всех опытах отлагалось кокса 2 вес. % на катализатор. В кинетической области горения при добавлении в катализатор различных металлов качественный характер регенерации катализатора на всем ее протяжении не изменялся. Однако металлы, нанесенные на катализатор, способствуют существенной интенсификации выжига кокса в начальный период по сравнению со скоростью выжига исходного катализатора. [c.166]

    Поскольку давление, объем и температура связаны между собой уравнением Клапейрона, то зависимость одного типа может быть преобразована в зависимость другого типа. Поэтому достаточно остановиться на рассмотрении изотерм адсорбции. На прак тике наиболее часто используются изотермы Лэнгмюра, Фрейндлиха, Генри, Шлыгина—Фрумкина—Темкина—Пыжова, Бру-науэра—Эммерта—Теллера (БЭТ) (табл. 3.1). Каждая из них связана с определенными допущениями относительно структуры поверхности адсорбента, механизма взаимодействия молекул адсорбента и адсорбата, характера зависимости дифференциальных теплот адсорбции от степени заполнения поверхности катализатора адсорбатом. Например, наиболее широко используемая изотерма Лэнгмюра основана на следующих допущениях 1) поверхность адсорбата однородна 2) взаимодействие между адсорбированными молекулами отсутствует 3) адсорбция протекает лишь до образования монослоя 4) процесс динамичен, и при заданных [c.150]

    Простые процессы. При небольщом числе реагирующих веществ и продуктов реакции часто можно определить величины к, которые зависят от постоянных значений и 2 в широкой области температур. Тогда для частиц не слишком малых размеров собственная активность, равная /г/5, представляет собой инвариант, непосредственно связывающий активность с характером поверхности катализатора. Это справедливо лишь для катализаторов, находящихся в квазистационарных состояниях, когда величины Т для наиболее легкоплавкого компонента твердой фазы лежат значительно ниже точки Таммана (для металлических пленок 90° К, для тугоплавких активных окислов 800° К) или же если температуры настолько велики, что спекание поверхности проходит почти полностью (платинородиевые сетки в реакции окисления аммиака). В этих условиях, изображая графически величину lg как функцию 1/Г, можно в широком интервале температур получить почти прямые линии и находить правильные значения энергии активации. Истинный порядок реакции, определяемый различными методами, оказывается при этом постоянным. Для сходных катализаторов можно построить логарифмические прямые, которые по некоторым причинам [2] пересекаются при определенной температуре в интересующей нас области. При небольших изменениях температуры порядок расположения катализаторов по относительной активности может меняться. [c.751]

    Вполне удовлетворительного объяснения этим фактам мы пока еще не имеем. Быть может, С—С-связи циклопентана отличаются меньшей устойчивостью, чем С—С-связи к-пентана, благодаря тому, что нятичленный цикл обладает большим внутренним напряжением, чем можно было бы ожидать в соответствии с теорией Байера сообран ения о повышенной напряженности пятичленного цикла высказывал Кистяковский с сотрудниками [16] в связи с измерением теплот гидрирования циклопентена и циклопентадиена. С другой стороны, гидрирование циклопентана с размыканием цикла имеет каталитический характер и может обусловливаться специфическими взаимоотношениями между природой и формой органической молекулы, с одной стороны, и характером поверхности катализатора — с другой. Эти взаимоотношения пока еще недостаточно ясны и конкретизированы. К сожалению, недостаток данных не позволяет вычислить константы равновесия этой реакции для разных температур. [c.142]

    Более подробно трансаннулярная дегидроциклизация циклооктана, 1,2-, 1,3-, 1,4- и 1,5-диметилциклооктанов и циклоалканов с 9—12 атомами С в цикле в присутствии Pt-катализаторов рассмотрена в работах [211—213]. В случае циклооктана и его гомологов реакция внутримолекулярной дегидроциклизации носит селективный характер. Специфическая ориентация молекул циклоалканов на поверхности катализатора в атмосфере Нг и неспецифическая ориентация в атмосфере N2 рассмотрена в работе [213]. [c.156]

    Естественно, сказанным не ограничиваются все факторы, могущие влиять на селективность протекания Сз-дегидроцпклизации алканов. Не исключено, что на предпочтительную адсорбцию конформации Б по сравнению с конформацией А в условиях проточного метода влияют и различия электронных плотностей у первичных (С-1, С-7) и вторичных (С-2, С-6) углеродных атомов в молекуле н-гептана. Возможно также, что при адсорбции некоторый вклад вносят различия в ван-дер-ваальсовых объемах адсорбирующихся частей молекулы (СНз-группа в случае конформации Б и СНо-группа для конформации А). Однако на данном этапе исследования нам представляется, что наибольшую роль в различной селективности Сз-дегидроциклизации по направлениям 1 я 2, ио-видимому, играют факторы, связанные с различным характером покрытия поверхности катализатора реагентами. [c.218]

    В настояш,ее время кислотный характер алюмосиликатных катализаторов крекинга не вызывает сомнения. Например, такие катализаторы можно титровать едким калием или такими органическими основаниями, как хинолин. Кислотные свойства катализаторов обусловлены, вероятно, присутствием протонов на их поверхности, активной частью которой может быть либо кислота трша (НА13104)ж [62], либо атомы алюминия с дефицитом электронов [37, 61]. Обсуждение теорий, предложенных для объяснения кислотности алюмосиликатных катализаторов не является целью, настоящей главы. Для данного изложения необходимо только указать, что ион карбония Д" ", инициирующий ценную реакцию, может образоваться либо [1] в результате реакции кислотного катализатора с олефином, который образуется при начальном термическом крекинге, либо путем дегидрирования парафинового углеводорода,. либо в результате отщепления гидридного иона от молекулы парафинового углеводорода атомом алюминия с дефицитом электронов [2]. [c.236]

    В результате крекинга углеводородов, кроме газа и легко кипящих продуктов, образуются высокомолекулярные соединения и так называемый кокс, который является смесью бедных водородом высокомолекулярных углеводородов Эти высокомолекулярные соединения сильно адсорбируются на поверхности катализатора. Поэтому реакцию каталитического крекинга можно рассматривать как гетерогенную химическую реакцию первого порядка, для которой характерна слабая адсорбция исходных веществ и сильная адсорбция некоторых продуктов реакции. Скорость каталитического крекинга подчиняется уравнению (XII, 139), но в 2(/( v ) входят величины, характери-аующие только те вещества, которые тормозят процесс. Обозначим эту [c.328]

    Элементарные С1адии ряда приведенных реакций предопределяются бифункциональным характером катализаторов риформинга. С одной стороны, они содержат один металл (платину) или несколько металлов (например, платину и рений, или платину и иридий), которые катализируют реакции гидрирования и дегидрирования. С другой стороны, носителем служит промотированный галогенами оксид алюминия, обладающий кислыми свойствами и катализирующий реакции, свойственные катализаторам кислотного типа. Поэтому разные элементарные стадии реакции могут протекать на различных участках поверхности катализатора металлических или кислотных. [c.7]

    Обычно в гетерогенном катализе каталитическую активность характеризуют относительным увеличением скорости реакции в расчете на единицу поверхности катализатора. Спецификой окисления является его автоускоренный характер. Поэтому кинетику автоокисления удобнее характеризовать не скоростью, которая меняется во времени, а ускорением, т. е. коэффициентом Ь в уравнении А[02] 2 = Ь . При гетерогенном катализе или ингибировании окисления количественной характеристикой удельной активности материалов служат отношения Ъ—bo)lboS — для материалов, обладающих каталитическим действием, и (Ьо—b) boS — для материалов, обладающих ингибирующим действием, где Ьо — коэффициент для топлива без металлов S — поверхность металла, см /л топлива. Значения (6—ba)fboS и (Ьо—b)/boS для различных материалов в топливе Т-6 при 125 °С представлены в табл. 6.3. [c.207]

    Количественные закономерности гетерогенно-каталитических процессов существенным образом определяются характером и скоростью протекания адсорбциопно—десорбционных стадий. Это в первую очередь обус.повлено тем, что в гетерогенном катализе скорость реакции зависит от поверхностных концентраций реагирующих веществ, а не от их объемных концентраций. Поэтому для гетерогенных процессов чрезвычайно важно установить влияние условий проведения процесса на степень заполнения поверхности катализатора реагирующими веществами. [c.21]

    На рис. 7.12 приведены неоднородные стационарные состояния при различных температурах. Интересно, что при изменении Т происходит переворот пятен. Например, при Т а 422,5 К неоднородное стационарное состояние имеет характер пятна СО на Оз, а при Г > 422,5 К — пятна О2 на СО. В первом случае ситуация характеризуется высокой активностью поверхности катализатора (большой скоростью ) с отдельными холодными пятнами, во 6,№ втором случае — поверхность в зна- 9 чительной степени не активна (й мала), но наблюдаются отдельные горячие пятна. [c.310]

    При протекании каталитической реакции через промежуточные комплексы влияние растворителя будет обусловлено его снособ-ностью образовывать комплексы с активными атомами поверхности катализатора. Если растворитель обладает высокой электронной донорно-акцепторной способностью или высокой л-электронной плотностью, то он сам будет входить в сферу лигандов комплекса и может понижать активность катализатора. Наоборот, достаточно инертные, неполярные растворптелп типа парафинов и циклопарафинов будут мало влиять на механизм комплексообразованпя. На кинетике процесса все это будет отражаться в виде ускорения или замедления скорости реакции при замене растворителя или усложнения формального уравнения кинетики вследствие изменения концентрации пли характера растворителя по ходу реакции. [c.50]

    Общая картина процесса определяется соотношением скоростей поверхностных и объемных реакций и длиной цепи объемных реакций. Если Ра и vз — длина цепи в реакции 3 — мала, то реакция имеет чисто гетерогенно-каталитический характер. Наоборот, при р1 Рв и большом значении vз реакция практически протекает как цепная. По первому варианту, например, происходит окисление среднемолекулярных олефинов в окпсп, а по второму — окисление пропилена в растворе бензола при наличии окисных катализаторов. Когда > Р5, а значение Vз достаточно велико, реакция носит промежуточный гетерогенно-цепной характер. Наконец, когда рз Рг и р5, реакция инициируется на поверхности катализатора и продолжается в объеме, т. е. имеет гетерогенно-гомогенный характер. При чисто гетерогенно-каталитическом механизме скорость реакции в кинетической области пропорциональна концентрации катализатора при гетерогенно-гомогенном механизме в соответ-ствип с уравнением (2.52) скорость реакции будет пропорциональна корню квадратному пз концентрации катализатора. В ряде случаев твердый катализатор-инпциатор имеет и функцию ингибитора, ускоряя обрыв цепей. В этом случае скорость реакции вначале растет с повышением концентрации катализатора, а затем перестает [c.53]

    Система уравнений (VIII.2)--(VIII.4) определяет характер зависимости С (г) в реальном стационарном процессе. Рассмотрим ее решение для случая, когда ws линейно связано с С (реакция первого порядка по объемной концентрации слабая адсорбция исходного вещества и продуктов на поверхности катализатора), Перейдем к безразмерным переменным р = г/Д, с = Учи- [c.275]

    Кроме изложенных выше особенностей жидкофазных гетерогеннокаталитических реакций, следует отметить, что они, как правило, весьма чувствительны к природе растворителя. Растворитель может вытеснять реагенты с поверхности катализатора, тормозя тем сауым каталитическую реакцию (сы. раздел II.4). В других случаях кис-лотно-основные свойства растворителя могут повлиять на характер сорбцип реагентов на поверхности катализатора, как это бывает при сорбции водорода на металлах. [c.44]

    Опыты по влиянию длительности обработки окисью углерода яа степень удаления никеля (см. рис. 99,6) проведены при 75 °С эбразец катализатора содержал 0,64% никеля. При различном режиме восстановления характер этой зависимости одинаковый. Основное количество никеля удаляется с поверхности катализатора в первые 1—2 ч контакта с окисью углерода. При дальнейшей обработке полученные результаты не улучшаются. Процесс постепенно замедляется, а затем полностью прекращается, на наш взгляд, из-за недостаточной степени восстановления окислов металла и из-за блокирования углеродом поверхности металла, еще активного к реакции образования карбонилов. Наличие углерода [c.245]

    В зависимости от характера изменения состояния катализатора и внешних условий каталитический процесс может протекать стационарно, нестационарно или квазистационарно. Наблюдаемые скорости химического превращения реагентов W в нестационарном режиме зависят от температуры и мгновенных концентраций всех компонентов реакции, включая и концентрации промежуточных веществ на поверхности катализатора. В стационарных условиях скорости образования или расходования индивидуальных газообразных веществ, принимающих участие в одной и той же химической реакции с учетом стехиометричеоких соотношений, равны между собой. [c.16]

    Известно [14], что скорость образования окиси этилена нелинейно зависит от степени покрытия поверхности кислородом и имеет резкий максимум при степени покрытия 0,5—0,6. Такой характер скорости обусловлен, по-видимому, структурным превра-щеппем поверхности металла и связанным с этим изменением типа связи металла с кислородом. Это происходит в результате взаимодействия кислорода как с поверхностью катализатора, так и с его приповерхностными слоями. Кислород, внедряясь в приповерхностные слои серебра, оказывает, очевидно, модифицирующее действие, подобное модифицирующему действию других электроотрицательных элементов [15]. Аналогия между глубоко адсорбированным кислородом и электроотрицательными промоторами и характер изменения активности и избирательности катализатора прп введении промоторов позволяют предположить, что эффект повышения селективности окисления этилена в нестационарном циклическом режиме обусловлен понижением энергий активации стадий, определяющих скорость окисления этилена по маршрутам полного и парциального окисления, причем более сильным понижением по последнему. Нестационарные условия позволяют, очевидно, провести процесс при более высоких концентрациях реакционного кислорода, благодаря чему и достигается более высокая избирательность. Пока нельзя исключить, что экстремум избирательности при величине периода 30 с связан с динамическими свойствами реактора и не обусловлен динамическим свойством поверхности катализатора. [c.35]

    Влияние температуры на выход продуктов крекинга представлено на рис. 22, который показывает, что кривые выхода бензина / и кокса 3 имеют экстремальный характер. С повышением температуры в результате разложения тяжелых углеводородов увеличивается выход бензина 1. Вместе с тем повышение температуры приводит к распаду легких углеводородов, входящих в состав бензина, с образованием газообразных продуктов 2. Начальное снижение выхода кокса 3 с повышением температуры объясняется увеличением испарения и десорбции некоторых промежуточных продуктов с поверхности катализатора. После достижения температуры, соответствующей минимальному выходу кокса, выход его растет, поскольку повышение температуры обусловливает возрастание глубины превращения сырья. В результате образования коксовых отложений при крекинге сырья катализатор дезактивируется в течение нескольких минут и отводится на регенерацию. Реге- [c.67]

    Как уже отмечалось выше, при недостаточно глубокой очистке ксилозных растворов в них остаются примеси коллоидного характера, которые при подщелачивании до pH 7,5— 8 и повышении температуры до 100—125 °С коагулируют и частично осаждаются на поверхности катализатора. Подобный осадок на поверхности катализатора состоит на 20—25% из органических и на 75—80% из минеральных веществ (в том числе ЗЮа 27% и РегОз 30% [11]). Блокировка поверхности катализатора солями кремневой кислоты отмечена также при промышленном испытании (проведенном Северокавказским филиалом ВНИИсинтезбелок ) получения ксилита из очищенных ксилозных растворов рисовой лузги (такие растворы содержат большое количество солей кремневой кислоты).  [c.153]


Смотреть страницы где упоминается термин Характер поверхности катализатора: [c.92]    [c.79]    [c.37]    [c.67]    [c.243]    [c.53]    [c.89]    [c.100]    [c.18]    [c.66]   
Смотреть главы в:

Катализ - исследование гетерогенных процессов -> Характер поверхности катализатора




ПОИСК





Смотрите так же термины и статьи:

Катализатора поверхность



© 2025 chem21.info Реклама на сайте