Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ионные атмосферы теория образования

    Электростатическая теория разбавленных растворов сильных электролитов, развитая Дебаем и Гюккелем в 1923 г., позволила теоретически вычислить средний коэффициент активности электролита, эквивалентную электропроводность сильных электролитов, а также теоретически обосновала правило ионной силы. При этом они сделали ряд предположений, справедливых только для предельно разбавленных растворов. Во-первых, они предположили, что единственной причиной, вызывающей отклонение свойств раствора электролита от идеального раствора, является электростатическое взаимодействие между ионами. Во-вторых, они не учитывали размеров ионов, т. е. рассматривали их как безразмерные точечные заряды. В-третьих, электростатическое взаимодействие между ионами они рассматривали как взаимодействие между ионом и его ионной атмосферой. Ионная атмосфера — это статистическое образование. [c.251]


    Недостатки теории Дебая — Гюккеля — Онзагера связаны с несовершенствами и ограниченностью ее теоретических допущений, рассматривающих лишь электростатическое взаимодействие ионов и усредненное влияние окружающей среды. В современных теориях концентрированных растворов электролитов, кроме образования различных ассоциатов, учитываются сольватация ионов и их конечные размеры, асимметричность распределения концентрации в движущейся ионной атмосфере, локальные изменения вязкости вблизи ионов, взаимодействие электрофоретического и релаксационного торможения и другие эффекты. Очевидно, что уточненные исследования растворов электролитов возможны лишь с учетом всей сложности их строения и разнообразных взаимодействий. [c.225]

    Теория Дебая и Гюккеля учитывает только кулоновское ион — ионное взаимодействие и игнорирует другие виды взаимодействий (например, ион — дипольное взаимодействие, образование ассоциа-тов, комплексов и т. д.). Во втором приближении П. Дебай и Э. Гюк-кель учли собственные размеры ионов. Для этого константа интегрирования Ау в уравнении (111.36) была взята в соответствии с формулой (П1.40), а потенциал ионной атмосферы определялся как предел 1ф—фЛг- а- Окончательный результат для среднего коэффициента активности имеет вид [c.40]

    В современных теориях электропроводности концентрированных растворов электролитов помимо конечных размеров ионов учитываются взаимодействие релаксационного и электрофоретического эффектов, локальные изменения вязкости вблизи ионов, асимметричность распределения концентрации в движущейся ионной атмосфере, образование ионных ассоциатов и другие эффекты. Однако чрезвычайная сложность этих теорий и громоздкий вид окончательных уравнений препятствуют их практическому использованию. [c.74]

    В основу теории положена идея о наличии вокруг каждого иона ионной атмосферы. Образование ионной атмосферы объясняется тем, что одноименно заряженные ионы взаимно отталкиваются, а разноименно заряженные взаимно притягиваются. Поэтому каждый ион окружается ионами противоположного знака. Ионная атмосфера содержит и положительные, и отрицательные ионы, однако в среднем вокруг каждого положительного иона имеется избыток отрицательных ионов, а вокруг каждого отрицательного — избыток положительных. Плотность ионной атмосферы максимальна у центрального иона, с удалением от него уменьшается. На определенном расстоянии, которое можно считать границей ионной атмосферы, количество ионов каждого знака становится одинаковым. Размер и плотность ионной атмосферы Дебай и Хюккель связали с термодинамическими свойствами растворов электролитов. В частности, [c.132]


    Возможность образования ионной атмосферы вытекает из статистической теории электролитов. Распределение ионов в растворе следует рассматривать как промежуточное между беспорядочным распределением молекул в жидкости и упорядоченным распределением частиц в кристаллической решетке. Ионы в растворе в каждый данный момент времени распределены не хаотически, а в некоторой степени упорядоченно благодаря кулоновскому притяжению зарядов противоположного знака. В каждый момент времени вокруг любого из ионов формируется оболочка из ионов противоположного заряда — ионная атмосфера (рис. 6.1,а). [c.286]

    Согласно теории сильных электролитов Дебая — Хюккеля, каждый ион полностью диссоциированного электролита окружен ионами, создающими поле противоположного знака. Такое распределение ионов в пространстве называется ионной атмосферой. При наложении внешнего поля центральный ион и ионная атмосфера, как обладающие зарядами, одинаковыми по величине, но обратными по знаку, движутся в противоположные направления. Силы меж-ионного взаимодействия вызывают торможения, растущие с увеличением концентрации, и, следовательно, уменьшающие эквивалентную электрическую проводимость. Движение ионной атмосферы в сторону, противоположную центральному иону, вызывает электрофоретическое торможение, обусловленное движением сольватированного иона против потока сольватированных ионов ионной атмосферы. Второй эффект торможения обусловлен нарушением симметрии расположения ионной атмосферы вокруг центрального иона при его движении под действием поля. Движение приводит к разрушению ионной атмосферы позади иона и образование ее на новом месте. Для этого требуется время релаксации, и потому позади движущегося иона всегда находится некоторый избыток заряда противоположного знака, тормозящего его движение. Это торможение называют релаксационным. На скорость движения иона в растворе влияет вязкость среды, создавая дополнительный эффект трения, который учитывается уравнением Стокса /т = 6ят]гу, где /т — спла трения т) — вязкость растворителя г — радиус иона V — скорость движения иона. [c.272]

    Это явление легко объяснить с точки зрения теории Дебая. Действительно, скорости, приобретаемые ионами под влиянием больших электрических полей, могут стать столь значительными, что фактическое время взаимодействия ионов станет меньше времени, необходимого для образования ионной атмосферы. В связи с этим ионное облако не сможет образоваться, и ионы начнут двигаться так быстро, как если бы они испытывали только сопротивление, вызванное вязкостью растворителя. [c.120]

    Однако результаты спектрофотометрических измерений в растворах кислот (оснований) и их солей могут быть искажены вследствие изменения электронных спектров поглощения при добавках электролитов и неэлектролитов. Это явление неоднократно наблюдалось при исследовании спектров поглощения неорганических и, главным образом, больших органических ионов [13, 159, 258—270]. Введение в раствор электролитов или неэлектролитов может привести либо к сдвигу полосы поглощения, либо к изменению молярного коэффициента погашения на максимуме полосы. Обычно оба эффекта проявляются одновременно. Они приводят к кажущемуся изменению концентрации поглощающего вещества. В одних случаях наблюдаемый эффект может быть вызван взаимодействием между поглощающим веществом и добавленным с образованием комплексных соединений или ассоциатов. В других случаях изменение спектра поглощения связывают с изменением ионной атмосферы вокруг поглощающего иона [271]. Однако, поскольку аналогичные эффекты наблюдаются и при добавках неэлектролитов, представляется убедительным утверждение [272, 263—267, 270], что они не могут быть объяснены только ионным взаимодействием но теории Дебая — Гюккеля, а причина заключается в изменении взаимодействия между поглощающим ионом и молекулами растворителя, образующими сольватную оболочку. [c.93]

    Усовершенствована электростатическая теория растворов электролитов, учитывающая не только эффект образования ионной атмосферы, но и электрические силы, действующие между ионами и молекулами растворителя и приводящие к уменьшению диэлектрической постоянной растворителя вблизи ионов [50— 55]. К сожалению, выводы этих теорий из-за их математической сложности пока мало пригодны для расчета коэффициентов активности, а тем более для количественного определения растворимости. [c.58]

    Эффект Вина применительно к сильным электролитам удалось объяснить на основе теории электропроводности Дебая — Онзагера. По модели раствора, предложенной Дебаем и Гюккелем, каждый ион окружен ионной атмосферой с радиусом Пока скорость движения иона мала, по сравнению со скоростью разрушения и образования ионной атмосферы, связанные с ней тормозящие эффекты сохраняются и электропроводность при данной концентрации выражается уравнением [c.117]


    Применительно к сильным электролитам эффект Вина можно объяснить на основе теории электропроводности Дебая — Онзагера. Согласно представлениям Дебая и Гюккеля, в растворе каждый ион окружен ионной атмосферой с радиусом 1/%. Пока скорость его движения мала (по сравнению со скоростью разрушения и образования ионной атмосферы), тормозящие эффекты, связанные с ионной атмосферой, сохраняются, и величина электропроводности при данной концентрации равна [c.114]

    Для теории сильных электролитов весьма важно подсчитать работу образования ионной атмосферы. Эта работа находится из расчета изменения энергии в процессе мысленного плавного разряда ионов, когда их заряды- от нормальной величины ег понижаются до ег, а затем и до 0. [c.104]

    Согласно физической теории устойчивости коллоидных систем ДЛФО в области перекрывания диффузных слоев коллоидных частиц вследствие перераспределения противоионов между слоями и окружающим раствором возникают дополнительные неуравновешенные электростатические силы отталкивания. Этому способствует возникновение дополнительного расклинивающего давления в тонком слое жидкости. В зависимости от баланса сил притяжения и отталкивания расклинивающее давление может быть положительным, увеличивая действие сил отталкивания, или отрицательным, при котором наблюдается уменьшение слоя жидкости между частицами. Жидкость, находящаяся в тонком слое, разделяющем две твердые поверхности, обладает большей упругостью формы. Действие расклинивающего давления между частицами обусловлено наличием ионной атмосферы у коллоидной частицы. Чем больше размыт диффузный слой, тем сильнее проявляется действие расклинивающего давления, тем выше устойчивость коллоидного раствора. При введении электролита изменяется толщина диффузного слоя и пленки жидкости, разделяющей частицы. После достижения порога коагуляции величина потенциального барьера снижается настолько, что кинетическая энергия взаимодействующих частиц превыщает его и частицы под действием межмолекулярных сил притяжения начинают сближаться, что означает начало процесса коагуляции. В начале процесса коагуляции размер образующихся агрегатов недостаточно велик и видимых изменений в коллоидном растворе не наблюдается. Это период скрытой коагуляции. Затем в результате дальнейшего укрупнения частиц начинается образование хлопьев. При введении в разрушающийся коллоидный раствор ВМС, имеющих макромолекулы с полярными [c.119]

    В 20-х годах XX в. своеобразную теорию выдвинули Дебай и Гюк-кель. В основе их теории лежит представление об ионных атмосферах, образованных ионами противоположных зарядов, окружающих каждый ион взаимодействие ионов заменялось, таким образом, взаимодействием их ионных атмосфер. [c.259]

    Диффузное расположение зарядов ведет к образованию вокруг каждой коллоидной частицы своеобразной ионной атмосферы . Толщина этой атмосферы Л примерно такая же, как и у ионов в истинных растворах сильных электролитов. Согласно современной теории такого рода растворов, к может быть вычислена из уравнения [c.126]

    Современная теория электролитов, начиная от теории Дебая и Гюккеля, является в своей основе электростатической теорией. Молекулярная модель этой теории основана на взаимодействии отдельных ионов по закону Кулона статистическими методами находится изменение энергии Гиббса при образовании ионной атмосферы и отсюда — выражение для средней активности ионов. Все рассмотрение учитывает взаимодействие ионов с растворителем только через эмпирические величины диэлектрической проницаемости О и ее температурного коэффициента [c.59]

    В растворе сильного электролита картина взаимодействия между частицами и в том числе между электрическими полями ионов необычайно сложна. Поэтому расчеты свойств раствора можно сделать, лишь вводя ряд упрощений. В частности, в теории растворов сильных электролитов, развитой Дебаем и Гюккелем (1923), исходят из того, что взаимодействие каждого иона с соседними заменяется взаимодействием одного (центрального) иона с окружающими ионами другого знака (противоионами). Скопление около центрального иона ионов противоположного знака обусловлено электростатическими силами притяжения и приводит к образованию так называемой ионной атмосферы (рис. 73). С помощью законов электростатики можно вывести уравнение изменения электрического потенциала в пределах ионной атмосферы и связать его с активностью электролита. Таким путем была получена формула (114). [c.201]

    Возможность образования различных ассоциатов совершенно не укладывается в рамки теории Дебая — Гюккеля, согласно которой единственным результатом электростатического взаимодействия является возникновение ионной атмосферы. Невозможность, по крайней мере в настояш,ее время, построения теории, адекватно отражающей природу растворов электролитов, привела, как уже отмечалось, к использованию эмпирических и иолуэмиирических уравиений. К наиболее часто применяемым уравнениям подобного рода относятся формулы Гюнтельберга [c.99]

    Однако для более высоких концентраций такая простая модель раствора ун е не представляет ценности, бопее того, приближение > 1г г/ЬкТ < 1 не может использоваться вблизи иона г [см. уравнение (ХУ.7.2)]. По Бьер-руму [50], любую пару ионов, взаимодействие между которыми составляет величину порядка 2кТ и более, следует рассматривать как ионную пару, а пе как независимые ионы, а теория Дебая — Хюккеля справедлива лишь для свободных ионов, находящихся друг от друга на расстоянии, достаточном для того, чтобы взаимодействие между ними было меньше 2кТ. Если обозначить это расстояние гв и пренебречь ионной атмосферой вокруг такой ионной пары , то для пары, образованной двумя ионами с. зарядами 2, и получим [c.452]

    Представления об образовании ионных атмосфер в растворах электролитов, нашедшие отражение в теории Дебая — Хюккеля, объяснили многие свойства электролитных растворов. Однако ряд экспериментальных фактов не объяснялся этой теорией. Непонятной была, например, аномальная электрическая проводимость, впервые обнаруженная Каблуковым (1890) при исследовании растворов НС1 в амиловом спирте. Обычно удельная электропроводность концентрированных растворов уменьшается с добавлением электролита. Каблуков нашел, что начиная с некоторой высокой концентрации электрическая проводимость раствора НС1 в амиловом спирте с дальнейшим ростом концентрации не уменьшалась, а возрастала. Впоследствии такого рода концентрационная зависимость электрической проводимости была обнаружена во многих других системах, включая водные растворы (например, растворы AgNOa). [c.445]

    Рассмотренные выше электростатические модели взаимодействия ионов являются, несомненно, упрощенными. Каждый ион окружен сольватной оболочкой, характер и размеры которой определяются ионом, его зарядом и радиусом, а также размерами молекул растворителя и такими их характеристиками, как дипольный момент их полярных групп, структура и размеры молекулы. Растворитель, его сольватирующая способность, влияние на взаимодействие ионов не сводятся только к среде с диэлектрической проницаемостью е. Точно так же взаимодействие ионов не ограничивается образованием только ионной атмосферы в растворе возникают ионные пары, тройники и ассоциаты из нескольких ионов. Различаются по своей структуре и ионные пары, которые могут быть разделены сольватной оболочкой или соприкасаться, образуя контактные пары. В целом картина более сложная и разнообразная, чем ее рисует классическая теория взаимодействия сферических зарядов в жидкой среде диэлектрика. Сольватирующая способность растворителя лишь отчасти определяется его диэлектрической проницаемостью. Для апротонных растворителей очень важна способность их гетероатомов быть донорами свободной пары электронов для катионов. Донорная способность растворителя характеризуется его донорным числом DN, которое для растворителя равно энтальпии его взаимодействия с Sb ls в растворе 1,2-дихлорэтана  [c.227]

    В предыдуцдих главах мы рассмотрели изменение свойств электролитов в связи с образованием вокруг ионов ионной атмосферы и в связи с ассоциацией их в ионные двойники и в более сложные агрегаты. Мы установили, что свойства электролитов средней силы в водных растворах и свойства сильных истинных электролитов в неводных растворах зависят от обеих причин и от образования ионной атмосферы и от равновесия между свободными ионами и ионами, связанными в ионные двойники и в ионные тройники. При описании свойств электролито средней силы мы учитывали неполную диссоциацию и одновременно величину коэффициентов активности ионов по теории Дебая (см. главу 4). [c.273]

    Относительные скорости образования характерных продуктов при данном отношении концентраций реагентов дают возможность получить отношение констант скорости kjkb. Если электрон, перед тем как он прореагирует, способен образовать полную ионную атмосферу, в соответствии с теорией Бренстеда — Бьеррума Igka при 25° С в воде оказывается связанным с ионной силой раствора ( л) уравнением (14)  [c.463]

    Теория сильных электролитов показывает, что образование ионных атмосфер ведет к замедлению движения ионов. Механизм замедляющего влияния ионных атмосфер двоякий. С одной стороны, имеет место электрофоретический механизм торможения, заключающийся в появлении встречного движения ионной атмосферы. Величину снижения электропроводности, вызванного электрофоретическим торможением, обозначим Ла. Кроме того, существует релаксационный механизм торможения движения иона. Замедленность процесса рассеяния ионной атмосферы ведет к тому, что при движении иона центр его ионной атмосферы как бы отстает от него. Противоположность зарядов иона и его ионной атмосферы ведет к тому, что отстающая от иона атмосфера притягивает его к себе, т. е. тормозит двигающийся ион. Релаксационное торможение ведет к понижению электропроводности. Обозначим понил<ение электропроводности, вызываемое релаксационным торможением, через Если величину эквивалентной электропроводности при бесконечном разведении обозначить через Аоо, то электропроводность раствора с конечной концентрацией Л может быть вычислена по уравнению [c.147]

    Двойной электрический слой может образоваться на непроводящих макроповерхностях и коллоидных частицах лишь при наличии достаточно большого количества зарядов. В растворах низкомолекулярных электролитов вокруг канодого иона, по теории Дебая — Гюккеля, образуется ионная атмосфера, а не двойной электрический слой напротив, в растворах полиэлектролитов (полиакриловые кислоты, нуклеиновые кислоты), на каждой молекуле которых содержится большое количество ионогенныхгрупп, создаются возможности образования двойного электрического слоя. [c.92]

    Используя квазирешеточную модель ионных растворов, предполагающую образование вблизи иона сфер противоположного заряда в результате обмена ионов со структурой квазирешетки без изменения общего распределения ионных атмосфер, Челеда [159] разработал теорию, с помощью которой возможно рассчитывать коэффициенты активности электролитов в широком интервале концентраций (до 5—10 т). Для тройных растворов [c.37]

    Чем же объяснить своеобраз1ие дзета-потенциала Как уже указывалось, при образовании термодинамического потенциала от поверхности твердого тела отщепляются ионы и уходят в среду. Благодаря электростатическому взаимодействию, эти ионы, несущие положительный или отрицательный заряд, должны расположиться на расстоянии одной молекулы от поверхности, в результате чего образуется двойной электрический слой Гельмгольца. Опыт показывает, однако, что внешний электрический слой размыт вследствие рассеивающего влияния теплового движения. Отсюда, по теории Г у и, вместо упорядоченнойоднослойной обкладки возникает ионная атмосфера, концентрация которой падает по мере удаления от поверхности твердого тела. Следовательно, количество положительных и отрицательных зарядов в коллоидной системе будет одинаково, но плотно 1сть заряда на поверхности коллоидной частицы и в ионной атмосфере будет значительно отличаться. Она будет наибольшей на поверхности частиц. Однако структура ионной атмосферы также неоднородна. [c.270]

    Эффект Вина. Представление об ионных атмосферах, лежащее в основе теории Дебая и Гюккеля, может быть проверено на электропроводностях следующим убедительным способом. Образование ионной атмосферы требует некоторого конечного, хотя и небольшого времениi, называемого временем релаксации. В условиях обычных измерений электропроводностей ионы движутся настолько медленно, что ионная атмосфера всегда успевает вокруг них образовываться при их перемещении, и они из нее никогда не выходят (некоторое запаздывание ионной атмосферы за движением иона все же наблюдается и является причиной упомянутой выше релаксационной силы торможения). Однако в полях очень большой силы ионы должны двигаться настолько быстро, что ионная атмосфера или совсем не будет успевать образовываться вокруг них, или будет образовываться лишь частично. В этих условиях слагаемые Xj и Х выражения (263) будут убывать и при очень сильных полях обратятся в пределе в нуль. Тогда эквивалентная электропроводность даже при конечных концентрациях должна стремиться к своему предельному значению Хсо, достигаемому в слабых полях при бесконечном разбавлении. Такое уменьшение тормозящих сил, вызванное устранением ионных атмосфер и проявляющееся в росте электропроводности с силой поля, действительно было найдено Вином и названо по его имени эффектом Вина. [c.338]

    В гл. I мы уже кратко указывали, что для развития теории концентрированных растворов в настоящее время нам кажется наиболее перспективным путь, избранный Г. И. Микулиным [8, с. 126— 171], сочетающий физический подход на основах электростатики с химическим на базе учения Д. И. Менделеева о растворах, оживленного современными возможностями эксперимента и теории. В гл. I мы кратко изложили основные положения теории Микулина (с. 18). Напомним, что рассматривая третий член в выражении для зависимости энергии Гиббса раствора от концентрации (О = О + 0 + О ), он уделяет ему особое внимание, так как именно этот член находится в сложной нелинейной зависимости как от концентрации, так и от температуры и давления. Отражая отклонения реального раствора от идеального. С в основном связан с природой и величиной сил взаимодействия между частицами раствора. Именно здесь отражено образование ионной атмосферы и ближнего порядка , а также изменение свойств растворителя в ближайшем окружении иона. Г. И. Микулин в основу вывода выражения для С кладет эмпирическую зависимость Мессона, ставя перед собой чисто математическую задачу найти вид функции О , удовлетворяющей пропорциональности от или ]/ кажущихся и парциальных молярных свойств (объем, теплоемкость, сжимаемость, термическое расширение) электролита в бинарных концентрированных водных растворах. Решая соответствующие дифференциальные уравнения в частных производных (за подробностями мы отсылаем читателя к цитированным оригинальным работам), автор нашел следующее выражение для О  [c.239]

    В этой теории модель строения раствора такая же, как и прн расчете коэффициентов активности. Ион под влиянием наложенного электрического поля начинает двигаться. На скорость его движения тормозящее действие оказывает ионная атмосфера, поскольку она имеет электрический заряд, противоположный по знаку заряду центрального иона, и поэтому под влиянием электрического поля двигается в направленни, обратном направлению иона (рис. 5.11). Вторая причина торможения связана с тем, что образование и разрушение ионной атмосферы происходит не мгновенно. Хотя на образование ионной атмосферы требуется очень небольшое время — порядка 10- °/ с (С — концентрация), все же при движении иона ионная атмосфера не успевает в каждый данный момент восстанавливать свою сферическую симметрию. Она все время остается асимметричной, причем большая часть ее заряда оказывается сконцентрированной позади двигающегося центрального иона. Это приводит к дополнительному торможению движения иона (рис. 5.12). [c.117]

    Не мгновенное образование ионной атмосферы вокруг центрального иона является причиной двух эффектов, предс1 азанных теорией и впоследствии [c.119]

    Еще одно весьма любопытное приложение солевого эффекта было впервые рассмотрено Дейнтоном и Логаном [7]. Если К является весьма быстро образующейся частицей, например гидратированным электроном (тсольв = = 10 сек.), то с момента ее возникновения и до образования равновесной ионной атмосферы, очевидно, должно пройти еще некоторое время, равное, согласно теории Дебая — Онзагера, т = 3,5 10 Szi/ SЯJ сек., где 2,- и — заряды и подвижности присутствующих ионов / — ионная сила. [c.82]

    Неспецифическое взаимодействие. Информацию, касающуюся стабилизации карбониевых ионов за счет неспецифических взаимодействий с другими ионами, получают путем изучения влияния солей на скорость образования иона карбония. Присутствие ионов в растворе обычно способствует реакции, и это интерпретируют как указание на дополнительную стабилизацию карбоний-ион-подобного переходного состояния по сравнению с реакцией в отсутствие соли за счет образования ионной атмосферы [731]. Такая модель приводит к простой электростатической теории [63]. Константа скорости к мономолекулярного гетеролиза реагента КХ в присутствии добавок солей связана с константой для случая отсутствия солей уравнением Бренстеда—Бьеррума [c.175]


Смотреть страницы где упоминается термин Ионные атмосферы теория образования: [c.314]    [c.103]    [c.81]    [c.103]    [c.407]    [c.155]    [c.299]    [c.53]    [c.90]   
Физическая химия растворов электролитов (1950) -- [ c.58 , c.60 ]

Физическая химия растворов электролитов (1952) -- [ c.58 , c.60 ]




ПОИСК





Смотрите так же термины и статьи:

Атмосфера

Атмосфера, ионы

Иониты Ионная атмосфера

Ионная атмосфера

Ионная атмосфера образования

Ионные образование

Ионные теория образования

Ионов образование

Ионы образование



© 2025 chem21.info Реклама на сайте