Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Экспериментальные кинетические методы

    В разделе 2.1.2 разработан метод определения коэффициента диффузии по одной экспериментальной кинетической кривой. Таким образом была получена возможность рещения так называемой обратной задачи математической физики. Теория [c.77]

    В процессах экстрагирования из растворов также можно использовать экспериментальные кинетические данные, полученные при экстрагировании из конкретного материала реальной формы. Цель такого метода — определить явный вид экспериментальной кривой извлечения для реального материала в условиях надежного и относительно простого опыта, чтобы можно было рассчитывать процессы диффузионного извлечения в иных концентрационных условиях. [c.126]


    Экспериментальные кинетические методы 33 [c.33]

    В физической химии применяется несколько теоретических методов. Квантово-механический метод использует представления о дискретности знергии и других величин, относящихся к элементарным частицам. С его помощью определяют свойства молекул и природу химической связи на основе свойств частиц, входящих в состав молекул. Термодинамический (феноменологический) метод базируется на нескольких законах, являющихся обобщением опытных данных. Он позволяет на их основе выяснить свойства системы, не используя сведения о строении молекул или механизме процессов. Статистический метод объясняет свойства веществ на основе свойств составляющих эти вещества молекул. Физико-химический анализ состоит в исследовании экспериментальных зависимостей свойств систем от их состава и внешних условий. Кинетический метод позволяет установить механизм и создать теорию химических процессов путем изучения зависимости скорости их протекания от различных факторов. [c.5]

    Исходные кинетические данные могут быть заданы также в графическом виде, например в координатах остаточное содержание серы 8 —фиктивное время процесса т. На рис. 2.5 приведены экспериментальные данные по гидроочистке смеси прямогонной дизельной фракции и легкого газойля каталитического крекинга. Значение г для соответствующих 5 и находят по экспериментальным кривым методом графического дифференцирования. Так, при остаточном содержании серы [c.155]

    Экспериментальные кинетические методы [c.33]

    Анализ опытных данных. Известны два метода анализа экспериментальных кинетических данных интегральный и дифференциальный. При интегральном методе анализа выбирают кинетическую модель с соответствующим уравнением скорости. После интегрирования и других математических преобразований устанавливают, что график зависимости С от I, построенный в некоторых специальных координатах х—у, должен быть прямой линией. Далее строят указанный график, и если получают достаточно четкую прямую линию, то принимают, что механизм удовлетворительно отвечает опытным данным. [c.59]

    В учебнике наложены основные теоретические концепции и обширный экспериментальный материал по основным разделам современной химической кинетики. Большое внимание уделено механизмам разнообразных химических реакций, элементарным реакциям и реакционной способности реагентов, специфике протекания реакций в газовой и жидкой фазах, гомогенному катализу. Описаны современные кинетические методы исследования. Каждый раздел предваряется краткой исторической справкой о развитии конкретной области химической кинетики. [c.2]


    Объектами современной кинетики служат реакции разнообразных молекул, ионов, свободных радикалов, молекулярных комплексов и др. Реакции исследуют в широком интервале условий температуры, давления, фазового состояния вещества, а также при фазовых превращениях веществ и воздействии на вещество света, проникающего излучения, магнитного и электрического полей. За последние сорок лет разработан богатый арсенал кинетических методов и приемов исследования, позволяющих следить как за медленными, так и за очень быстрыми превращениями частиц (от до 10 2 с )- Создана специальная аппаратура для зондирования поведения частиц вблизи вершины потенциального барьера. В теоретической кинетике предложен ряд моделей экспериментального акта с использованием идей и аппарата квантовой химии. При анализе многостадийных химических реакций широко применяются математические модели и компьютерный расчет. Успешно развивается химическая информатика в виде разнообразных банков кинетических данных. [c.11]

    Обзор и оценка различных методов (статистических и динамических, интегральных и дифференциальных, импульсных) изучения кинетики нефтехимических процессов, а также информация об аппаратурном оформлении экспериментальных кинетических установок (реакторная система, дозаторы реагентов, устройства циркуляции, различное вспомогательное оборудование и т. д.) наиболее полно представлены в [11]. [c.81]

    Видимо, будущее развитие кинетики ферментативных реакций СО СЛОЖНОЙ стехиометрией покажет, насколько статистическая кинетика в ее современном варианте оказалась полезной для анализа конкретных экспериментальных данных. Автор, со своей стороны, полагает, что главное достоинство статистической ферментативной кинетики заключается не столько в ее значимости для расчета формальных эмпирических коэффициентов и количественного анализа экспериментальных кинетических кривых или в ее формулах, показывающих связь микроскопических и макроскопических параметров, сколько в ее общих выводах, иллюстрирующих принципиальные закономерности ферментативной деструкции полимерных субстратов во времени. Именно на эти закономерности будет обращаться основное внимание при изложении кинетики ферментативных превращений полимеров. В заключение данного раздела будут изложены кинетические подходы к деструкции полимерных субстратов, разработанные автором с коллегами, в которых сделана попытка уйти от формализованных статистических методов математического анализа и главное внимание уделено аналитической ферментативной кинетике. [c.107]

    Экспериментальным путем с применением рентгеновского, магнитного и кинетического методов нам удалось доказать, что при температурах 450—500° С и науглероживании мелкодисперсного железа чистым метаном действительно образуется чистый карбид железа РбдС [12]. Таким образом, впервые была показана возможность низкотемпературного синтеза чистого цементита в метастабильном состоянии науглероживанием железа метаном. При температурах 550—700° С цементит образуется этим путем с примесью углерода и быстро разрушается. Кинетическим методом получено указание на возможность образования карбида кобальта С02С. Образование других карбидов железа, кобальта и никеля не удалось доказать, что объясняется их относительно малой стабильностью. [c.110]

    Графический метод. Если время гибели промежуточного продукта сравнимо со временем затухания светового импульса вспышки, то экспериментальная кинетическая кривая получается сдвинутой относительно кривой вспышки (рис. 71). При этом кинетика затухания описывается следующим дифференциальным уравнением  [c.189]

    Теоретическое развитие вириального уравнения состояния было начато гораздо позже его применения для описания экспериментальных данных. Правда, это не относится к теории второго вириального коэффициента. Строгое теоретическое обоснование уравнения состояния представляло огромные трудности даже после того, как в 1927 г. Урселом [12] была математически обоснована форма разложения в виде степенного ряда. И только после работ Майера [13], выполненных в 1937 г., теория уравнения состояния получила свое развитие. Формальную теорию и в классической, и в квантовой механике теперь можно рассматривать как в основном законченную теорию, хотя все еще существуют трудности, связанные с точным численным расчетом высших вириальных коэффициентов. В отличие от общей теории вириального разложения теоретическое обоснование второго вириального коэффициента известно уже давно. Причиной является то, что это частный случай вириального разложения для низких плотностей, который можно было решить сравнительно просто. Несколько разных математических методов было использовано для развития теоретической интерпретации второго вириального коэффициента. Возможно, самым старым и простым из них является расчет давления при рассмотрении потока момента через воображаемую единицу площади поверхности в газе [14]. Второй вириальный коэффициент является тогда дополнительным членом, учитывающим двойное взаимодействие. Этот кинетический метод очень трудно применить к вычислению высших вириальных коэффициентов, исключая некоторые модели молекул, например жесткие сферы [15]. Более общие методы [c.12]


    Определение механизма химической реакции. Установление механизма химического превращения— одна и9 наиболее сложных задач химической кинетики. Трудности возникают прежде всего потому, что одним и тем же кинетическим кривым, полученным экспериментально, может соответствовать множество различных механизмов реакции. Однако практически приходится рассматривать ограниченное число вероятных механизмов реакции. При этом с помощью АВМ можно сравнительно быстро просмотреть несколько механизмов и сразу отсеять те, которые не согласуются с опытом, поскольку невозможность согласования расчетной кривой с экспериментальной указывает на ошибочность данного механизма. Успешность такого метода определения истинного механизма процесса значительно возрастает с увеличением количества экспериментальных кинетических данных для исходных, промежуточных и конечных веществ, которые можно было бы сравнивать с расчетными величинами. [c.347]

    Экспериментально кинетику ферментативной р-ции в предстационарном режиме исследуют с помощью метода остановленной струи (см. Струевые кинетические методы), позволяющего смешивать компоненты р-ции в течение 1 мс. [c.82]

    Процесс установления механизма какой-либо реакции нельзя описать кратко, поскольку он связан со многими экспериментальными ухищрениями и теоретическими идеями. Кинетические данные оказываются очень полезными при определении механизма. Некоторые сведения о механизме можно также получить, используя изотопы для определения последовательных состояний различных атомов в ходе реакции и спектроскопические методы для идентификации промежуточных соединений. Для выявления и изучения очень быстрых стадий механизма мол<но применять релаксационные методы, в то время как медленные стадии обычно являются стационарными. Механизм должен приводить к определяемому экспериментально кинетическому уравнению и соответствовать наблюдаемому на опыте суммарному химическому превращению. [c.292]

    Эта особенность сложных реакций служит главной причиной практической невозможности полного решения вопроса о химическом механизме реакций на основе одного только измерения концентраций исходных, конечных или устойчивых промежуточных веществ, а также суммарного давления реагирующей смеси по ходу реакции, т. е. в зависимости от времени (кинетический метод). Включв1П1е в кинетический метод данных по кинетике накопления и расходования лабильных промежуточных веществ, ставшее возможным с развитием метод1Эв обнаружения и измерения их концентраций, делает его значительно болео эффективным в исследовании механизма химических реакций. Поэтому одним из первых этапов решения вопроса о химическом механизме реакции должно быть выяспение природы тех активных промежуточных веществ, которые принимают участие в элементарных стадиях реакции. Применяющиеся в настоящее время экспериментальные методы обнаружения химически неустойчивых (лабильных) промежуточных веществ и методы измерения их концентраций вкратце будут рассмотрены в следующем параграфе. Здесь же ограничимся рассмотрением вопроса о связи особенностей химического механизма реакции с ее макрокинетическим законом. [c.23]

    Ранние теории были основаны на экспериментальных данных полученных в условиях глубокой конверсии, а [20] более глубокое понимание механизма реакции стало возможным благодаря развитию более точных методов анализа. После этих попыток были выдвинуты теории [20] предполагающие образование в качестве промежуточных продуктов свободных радикалов. Особое значение теория свободных радикалов приобрела в работах Ф. Райса [63], который рассматривал метил, этил, пропил и аналогичные высшие радикалы как единственные промежуточные продукты реакции он разработал детально этот механизм с учетом надежных данных по энергиям активации указанных реакций. И хотя Ф. Райс подтвердил свою теорию экспериментальными кинетическими данными [20], сомнение в их существовании исторически преодолевалось с большим трудом. Долгое время наличие и тем более значение их в процессе разложения углеводородов не признавалось. Это объясняется тем, что [97] доказательство существования стабильных свободных радикалов проводилось косвенными химическими методами. [c.60]

    Поскольку кинетика изучает реакцию как процесс, то она имеет и специфическую методологию - совокупность теоретических концепций и экспериментальных методов, позволяющих изучать и анализировать химическую реакцию как развертывающийся во времени эволюционный процесс. Экспериментальная кинетика располагает разнообразными приемами проведения реакции и методами контроля за ней во времени. За последние 40 лет разработаны кинетические методы изучения быстрых реакций струевые, импульсные и т. д. Созданы при- [c.16]

    В работах Ю. П. Ямпольского [126—129] кинетическими методами были найдены концентрации радикалов при пиролизе углеводородов. В результате моделирования на ЭВМ эти же величины были получены расчетным путем. В табл. 8 приведены расчетные и экспериментальные концентрации. Согласование между ними достаточно хорошее, что служит подтверждением адекватности модели реальным процессам. Модель, описывающая пиролиз углеводородов на уровне элементарных реакций, позволяет оценить различного рода инициирования непосредственным впрыском радикалов, например введением частично диссоциированного водорода или металл-органических соединений. [c.39]

    За последние годы в результате развития экспериментальных методов, особенно калориметрии, масс-спектроскопического и кинетических методов, наши сведения об энергиях химических связей значительно обогатились. Появились сведения об энергиях связей ранее не исследованных соединений, были существенно уточнены многие из известных ранее значений. Можно считать окончательно решенным вопрос о величине энергии связей во многих простейших соединениях. [c.7]

    В кинетических методах наиболее часто используют метод тангенсов как наиболее точный (использует большое число экспериментальных данных) и универсальный (применим для реакций с индукционным периодом). Реже применяют способ фиксированного времени и способ фиксированной концентрации, хотя эти способы более просты и менее трудоемки. Способ фиксированной концентрации используют обычно при автоматизации контроля, способ фиксированного времени — при проведении серийных анализов. [c.272]

    Возможность образования протонированного эпоксида, способного далее изомеризоваться в оксосоединение или превращаться под влиянием аниона кислоты в продукт раскрытия цикла, подтверждена экспериментально. Кинетическими методами показано, что при окислении фенилзамещенных олефинов -стирола и 3-фенилциклогексена параллельно с соответствующими эпоксидами образуются изомерные карбонильные соединения [249]. При этом вероятность образования оксосоединения из 3-фенилциклогексена значительно меньше, чем из стирола, в связи с нарушением планарности колец бензола и циклогексена, что приводит к дестабилизации иона карбония. [c.77]

    При помощи кинетического метода вымораживания радикалов в сочетании с методом ЭПР Налбандяном и Манташяном [93] получены прямые экспериментальные данные о ведущих активных центрах в реакциях окисления метана, этана и пропана. Были обнаружены алкильные (R), алкилперокисные (ROO), алкоксильные (R0) и гидроперекисные (HOj) радикалы. [c.221]

    Описан экспериментальный прием ("метод концентрационных тестов"), позволяющий оценивать влияние на кинети1дг процессов изменений активности катализатора за счет взаимодействия его о реакционной средой. Метод позволяет отделить собственно кинетические данные от э екта, связанного с химической неоднородностью катализатора по дяяне слоя. [c.181]

    Вычисление констант равновесия радикальных реакций можно выполнить на основании данных кинетики о константах скоростей прямой и обратной реакций, либо при помощи термодинамических методов. Прн вычислении констант рав-повесия кинетическим методом требуются экспериментальные значения констант скоростей или величины стерических факторов, энергий активации и газо-кинетических поперечников реагирующих частиц для прямой и обратной реакций. Как правило, экспериментальные данные по кинетике обратных реакций отсутствуют. Это затрудняет оценку тепловых эффектов радикальных реакций по величине энергий активации прямой и обратной реакций. [c.246]

    Собственно кинетические методы. Определяют 1сон-центрацию окислителя илн восстановителя, который медленно реаги1)ует с соответствующим веществом в растворе. Определение основано на измерении скорости реакции. Смешивают испытуемый раствор с рабочим, взятым в значительном избытке. Через определенные промежутки времени определяют количество продукта реакции илп количество прореагировавшего рабочего раствора. Составляют график, иа оси абсцисс которого откладывают время, а на оси ординат результат определения. По углу наклона кривой можно рассчитать концентрацию определяемого компонента. Зависимость эффекта реакции от концентрации определяемого компонента устанавливают экспериментально с помощью его растворов известной концентрации. [c.373]

    Материал, собранный во второй части книги, ни в коей мере не следует считать систематическим изложением многогранного кинетического метода в приложении его к ферментативному катализу. Это скорее всего попытка рационального отбора наиболее распространенных и оправдавших себя подходов к изучению структуры активного центра и механизма действия ферментов. Они изложены в весьма сжатой форме, которую, однако, легко раскрыть в ходе семинарских занятий. Все примеры, иллюстрируюш,ие отдельные теоретические положения, отобраны из непосредственных экспериментальных данных для широкого круга ферментов. [c.171]

    На основе изложенного материала видно, что ни метод ЛЭП, ни ЛЭПС, ни обобщенный метод ЛЭПС не являются кардинальным решением вопроса, так как для описания кинетических процессов величины К находятся из экспериментальных кинетических данных. Эти методы скорее объясняют процесс, нежели его предсказывают. Вследствие этого необходимо думать о другом методе решения. Одна из таких попыток рассматривается в следующем вопросе. [c.131]

    Будучи более точным, чем методы, основанные на дифференци-роваиии экспериментальных зависимостей, метод, основанный на иримеиеипп ре ,ктора идеального смешения, существенно менее зкоиомичеи, так как для определения одной точки на зависимости скорости реакции от состава требуется проведение отдельного эксперимента с непрерывной подачей в реактор исходной смеси. В то же время из одной кинетической кривой можно получить большое число точек для той же зависимости. [c.59]

    Научная и практическая важность ускорения экспериментальных кинетических исследований углеродистых материалов(УМ) требует совершенствования экспериментальной техники и методов математического моделиррвания исследуемых процессов. [c.79]

    Для определения соединений при помощи кинетических методов (рис. 6.2 1) требуется прямо или косвенно измерить скорость реакции, которая связана с концентрациями реагентов (ур. 6.2-6). Для этого измеряют изменение концентрации реагента или продукта как функцию времени в экспериментальных условиях, соответствующих реакции псевдопервого порядка. В итоге строят соответствующий график этой зависимости, представляющий собой возрастающую рдя продукта реакции) или убьшающую (для реагента) кинетическую кривую. [c.332]

    Неоднозначность приведенных экспериментальных кинетических параметров реакции разряда-иониэации железа, вероятно, свя зана с зависимостью скоростей электродлых реакций от качественного и количественного составов раствора, влиянием кислотности электролита на величину перенапряжения железного электрода и с применением раэлич-ных современных методов при исследовании кинетики процессов. [c.66]

    Для определения удельной поверхности углеродистых саж применяют колориметрический метод, основанный на простой зависимости между оптической плотностью суспензии и размером взвешенных в ней частиц при данной концентрации. Эта зависимость справедлива для таких систем, в которых размер частиц близок к длине волны примененного света. Керкер измерял радиус частиц с помощью поляризованного света [218]. Методом рассеяния рентгеновских лучей под малыми углами измеряли радиус частиц до 5 нм и меньше [219]. Теснер разработал кинетический метод определения удельной поверхности саж, основанный на экспериментально установленном факте, что разложение углеводородов на поверхности углерода представляет собой чисто поверхностный процесс. Скорость процесса при прочих равных условиях пропор-циональна поверхности и может быть измерена прямым гравиметрическим методом [220]. [c.94]


Смотреть страницы где упоминается термин Экспериментальные кинетические методы: [c.51]    [c.92]    [c.348]    [c.126]    [c.392]    [c.347]    [c.31]    [c.521]    [c.174]    [c.75]    [c.75]   
Смотреть главы в:

Химия азокрасителей -> Экспериментальные кинетические методы




ПОИСК





Смотрите так же термины и статьи:

Кинетические методы



© 2025 chem21.info Реклама на сайте