Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Бутадиен гидрирование

    Интеграл р является параметром в методе Хюккеля, его не вычисляют квантовомеханическим путем, а оценивают по опытным данным. При каталитическом гидрировании олефинов выделяется 127 кДж/моль, а при гидрировании бутадиена — 239 кДж/моль, а не 254, как следовало бы при двух изолированных связях С = С [к-15]. Если считать, что именно делокализация — сопряжение связей — понизила энергию бутадиена на 15 к Дж/моль, то =—0,472Р = 15 кДж/моль. Откуда Р яй —32 кДж/моль. Этой величиной Кюжно воспользоваться для расчетов других молекул четных полиенов по МОХ. Однако в такой оценке резонансного интеграла есть известный произвол, так как считают, что энергия всех связей С—С и С—Н не изменяется при переходе от этилена к бутадиену, что не доказано. Поэтому нельзя придавать особенно большого значения определению интегралов р из термохимических или других экспериментальных да гных. [c.224]


    Двойные сопряженные или изолированные связи определяют характерное для этих случаев изменение теплоты гидрирования. Так, в соединениях с сопряженными двойными связями (бутадиен,. бензол) теплота гидрирования, определенная опытным путем, меньше, чем рассчитанная суммированием средних значений теплот гидрирования каждой двойной связи (около 28,5 ккал/моль). Эта разница обусловлена сопряжением связей. [c.236]

    Бутадиен-1,3 по-разному реагирует с водородом. Напищите уравнения реакций гидрирования бутадиена-1,3 1) натрием (в спирте), 2) водородом в присутствии катализатора (никель, платина). [c.38]

    Кубовые остатки деэтанизатора, содержащие углеводороды С., и более тяжелые продукты, направляются в депропанизатор здесь происходит отделение пропан-пропиленовой фракции. Температура в кубе депропанизатора 104 °С, температура верха 25—30 С, давление около 1,1 МПа. Кубовые остатки из депропанизатора самотеком поступают на питание дебутанизатора, а верхний продукт— пропан-пропиленовая фракция — после осушки подается в колонну фракционирования пропилена. Выделение чистого пропилена достигается при температуре в кубе пропиленовой колонны 46—48 °С и давлении 1,6—1,8 МПа. Пропилен отбирается из верха колонны, а кубовая жидкость направляется на извлечение из нее аллена и метилацетилена. Колонна дебутанизации предназначена для выделения бутан-бутиленовой фракции. Температура в кубе дебутанизатора 114—119 °С, температура верха 40—42 °С, давление около 5 МПа. Из верха дебутанизатора отбирается богатая бутадиеном и бутиленами фракции С4. Кубовые остатки дебутанизатора — пиролизный бензин — направляются на гидрирование, а затем на выделение бензола. Основные продукты установки пиролиза — этилен и пропилен — получаются полимеризационной чистоты. Содержание основного продукта в товарном этилене 99,9 % (об.), в пропилене 99,8 % (об.). [c.47]

    Процессы дегидрирования и гидрирования имеют очень важное значение в промышленности. Дегидрированием получают ненасыщенные соединения, представляющие большую ценность в качестве мономеров для производства синтетического каучука и пластических масс (бутадиен-1,3, изопрен, стирол), а также некоторые альдегиды и кетоны (формальдегид, ацетон, метилэтилкетон). Реакциями гидрирования синтезируют циклогексан и его производные, многие амины (анилин, гекеаметилендиамин), спирты (н-пропиловый, -бутиловый и высшие). Процессы гидрирования применяют также при гидрогенизации жиров и получении искусственного жидкого топлива (гидрокрекинг, риформинг, гидрогенизация угля н т. д.). Очень часто реакции гидрирования и дегидрирования являются этапами многостадийных синтезов ценных органических соединений — мономеров, поверхностно-активных ве-щестп, растворителей п т. д. [c.456]


    При использовании в качестве диенофила бензохинона и его производных, например толухинона, при реакции с бутадиеном образуются гидрированные производные нафтохинона, которые легко, особенно в щелочной среде, при действии воздуха превращаются в производные нафтохинона  [c.286]

    Ряд циклобутана. — Первое соединение этого ряда, диэтило- вый эфир циклобутандикарбоново [-1,1 кислоты I, было получено Перкино м мл. путем малонового синтеза (1887). В результате омыления и пиролиза замещенной малоновой кислоты И была получена циклобутанкарбоновая кислота III, но дал1)Нейшие попытки Перкина превратить ее в циклоалкан, лежащий в основе всего ряда, оказались безуспешными, так как при пиролизе кальциевой соли этой кислоты получался только этилен. Синтез циклобутана был впервые осуществлен с низкими выходами Вильштеттером (1907 следующим многостадийным путем. Синтезированная Перкином монокарбоновая кислота III была превращена через хлорангидрид п амид IV в амин V, из которого исчерпывающим метилированием был получен иодметилат VI, переведенный затем в четвертичное основание VII в результате гофманов-ского расщепления VII был получен циклобутен VIII, при осторожном гидрировании которого образовался циклобутан IX и бутадиен. [c.31]

    Побочно образуется 1,2-изомер, который при действии катализаторов кислотного типа можно превратить в 1,4-изомер. Гидролиз и гидрирование этого изомера ведут к получению бутандиола-1,4 и уксусной кислоты, которую вновь направляют на реакцию. Выход продукта достигает 85% по бутадиену. [c.454]

    С—С — 1,48 А [18]. Поскольку для простой связи С—С, не соседствующей с ненасыщенной группой, типичное межатомное расстояние равно 1,54 А (разд. 1.10), укорочение простой связи в бутадиене может служить доказательством резонанса. Однако подобное укорочение связи можно также объяснить изменениями в гибридизации (разд. 1.11). Предлагались и другие объяснения этого явления [19]. Энергия резонанса бутадиена, вычисленная по теплотам сгорания или гидрирования, составляет лишь около 4 ккал/моль такая величина вряд ли обусловлена только резонансом. Расчет по теплотам атомизации дает величины энергии резонанса 4,6 ккал/моль для 1,3-пента-диена и —0,2 ккал/моль для 1,4-пентадиена. Каждое из этих соединений имеет две двойные связи С = С, две простые связи С—С и восемь связей С—Н и, казалось бы, позволяет сравнить сопряженную и несопряженную системы тем не менее в строгом смысле эти соединения мало сравнимы. В цис-1,3-пентадиене имеются три связи зр -С—Н и пять связей —Н, а в 1,4-пентадиене — две и шесть соответствующих связей. Кроме того, в 1,4-диене обе простые связи С—С относятся к sp —5р -типу, а в 1,3-диене только одна такая связь, а другая связь С—С принадлежит к 5p —хр -типу. Поэтому вполне возможно, что некоторая доля и без того небольшой величины 4 ккал/моль является не энергией резонанса, а разностью энергий связей, имеющих различную гибридизацию [20]. [c.53]

    Гидрированием ацетилена получают этилен в странах, где нет нефтяной промышленности. В некоторых современных процессах избирательно гидрируются замещенные ацетилены —продукты, загрязняющие бутадиен, полученный дегидрированием бутана. [c.241]

    На описываемом заводе метан подвергают окислительному пиролизу при температуре 1700° кислородом, получаемым путем разделения воздуха на установках Линде. Продукты окислительного пиролиза после компримирования и охлаждения поступают на выделение ацетилена, который направляется далее на переработку в ацетальдегид. Ацетальдегид получают из ацетилена в реакторах, содержащих катализатор — водный раствор сульфата ртути, сульфата железа и металлическую ртуть. Образовавшийся ацетальдегид подвергают неполному гидрированию, продуктом которого является этиловый спирт. Конденсацией спирта с ацетальдегидом получают бутадиен. Гидрогенизация и конденсация проводится в трубках, обогреваемых циркулирующим горячим жидким теплоносителем, нагреваемым в отдельной топке. Бутадиен выделяют из полученной смеси дистилляцией и ректификацией. [c.162]

    Диены, присутствующие в исходном продукте, образуются в результате глубокого дегидрирования к-парафипов при пх превращении в моноолефины. Один из исходных продуктов в производстве изооктапа, к-бутеп, получается в виде смеси бутена-1 и бутеиа-2 при каталитическом дегидрировании к-бутана после отделения водорода их вместе с ненрореагировавшим бутаном вводят п реакцию алкилирования. В зависимости от условий дегидрирования к-бутен содержит больше или меньше бутадиена, поскольку наряду с дегидрированием к-бутана в бутены нроисходит в незначительной степени дальнейшее дегидрирование к-бутенов в бутадиен. Чтобы бутадиен не попадал в аппарат для алкилирования, его можно предварительно селективно поглотить из углеводородной смеси отработанной серной кислотой. Однако такой способ удалепия бутадиена всегда сопровождается потерями цепного моноолефина, так как последний частично сонолимеризуется с бутадиеном и в таком виде удерживается серной кислотой. В последнее время бутан-бутиленовые смеси очищают от бутадиена неполным гидрированием последнего в бутен. [c.324]


    Когда удаление ацетилена проводится на ранних стадиях процесса и в газе содержится водород, в качестве катализатора применяют восстановленную окись железа, а также окисные кобальт-молибденовые и хром-никель-кобальтовые катализаторы. На этих катализаторах не образуются значительные количества полимеров и достигается снижение содержания ацетилена до 10-10 % и менее. Потери этилена при этом составляют около 1%, и происходит гидрирование значительной части содержащегося в газе бутадиена. Если бутадиен является одним из целевых продуктов, то он должен быть извлечен при указанном способе уда.тения ацетилена до гидрирования. [c.308]

    Поставляет патентованные катализаторы гидрирования. Тип Р предназначен для очистки газов с высоким содержанием этилена, тип К - для очистки от ацетилена газов, богатых бутадиеном. [c.193]

    Очевидно, что протеканию реакции благоприятствует низкое давление, поскольку она идет с увеличением объема. Поэтому давление поддерживают на таком низком уровне, который лишь обеспечивает достаточную скорость потока газов. Как отмечалось ранее, давление желательно понижать, но в большинстве случаев этого не делают и реакцию проводят при 5—25 фунт/ /дюйм . Как и во всех процессах, в которых имеется возможность протекания обратной реакции, газы, выходящие из реактора, быстро охлаждают и стараются не допускать их контакта с катализаторами гидрирования. Эта реакция не является селективной, так как наряду с метаном и этиленом образуются пропилен, ацетилен, водород, бутадиен, бутан и жидкий продукт, называемый дриполеном. [c.145]

    Процесс хемосорбции обратим и бутадиен — углеводород с высокой растворимостью — способен вытеснять из раствора менее растворимые бутилены. Содержащ,иеся в бутадиеновых фракциях ацетиленовые углеводороды в присутствии меди полимеризуются и загрязняют медноаммиачный раствор, поэтому часть его непрерывно пропускают через угольные фильтры, где адсорбируются полимеры. Во избежание этого целесообразно осуществлять предварительное гидрирование ацетиленовых углеводородов в сырье, поступающем на разделение. [c.169]

    Скорости гидрирования бутадиена до бутилена и бутилена до бутана приблизительно одинаковы, но в присутствии бутилена бутадиен избирательно гидрируется с весьма малым образованием бутана. Предполагается [82], что бутадиен покрывает поверхность катализатора вследствие избирательной его хемосорбции,так что в активированной адсорбции бутилена участвует лишь ничтожно малая часть поверхности. [c.129]

    Показано [330], что на оксиде церия можно гидрировать бутадиен-1,3 при комнатной температуре с использованием циклогексадиенов в качестве источника водорода для этой реакции. Найдено, что 1,4-цикло гексадиен значительно более активен в гидрировании бутадиена-13 по сравнению с 1,3-циклогексадиеном. Однако на MgO такого различия изомеров не наблюдалось [330]. [c.122]

    Особый интерес представляет 1,4-дихлорбутен-2, обладающий двумя исключительно подвижными атомами хлора. При взаимодействии с циани- стым натрием хлор легко замещается нитрильными группами, образуя ненасыщенный динитрил, который гидрированием может быть переведен в гексаметилендиамин. Кроме того, ненасыщенный динитрил может быть восстановлен в динитрил адининовой кислоты, а этот последний омылен в ади-пиновую кисл ту. С этой точки зрения бутадиен можно рассматривать как важнейший исходный материал для получения найлона. [c.256]

    Олигопропилен по сравнению с олигоэтиленом не обладает высокими вязкостно-температурными свойствами и термостабильностью, что объясняется наличием в молекулярной цепи боковых ответвлений. Поэтому наиболее целесообразным способом получения синтетических масел [пат. США 3923919, 4182922] является соолигомеризация пропилена с этиленом в присутствии стерео-специфических катализаторов с последующим гидрированием полученных соолигомеров. Широкие возможности варьирования структуры соолигомеров открываются при использовании в качестве исходного сырья различных мономеров этилена, пропилена, стирола, бутадиена и др. Согласно пат. ГДР 109226, например, синтетические смазочные масла получают соолигомеризацией под давлением алкенов С4 или бутеновой фракции газа пиролиза с бутадиеном-1,3 в присутствии катализатора Фриделя — Крафтса. [c.155]

    Гидрированные стирол-диеновые сополимеры - гидрированные стирол-диеновые (изопрен или бутадиен) загущающие присадки характеризуются тем, что придают маслу энергосберегающие свойства, хорошую низкотемпературную вязкость и хорошо проявляют себя при вьюокой температуре в двигателе. [c.28]

    Мягким гидрированием диацетонового спирта получают 2-метилпен-тандиол-2,4, которглй при дегидратации переходит в 2-метилбутадиеп-1,3. Последний с двуокисью серы дает циклический ненасыщенный сульфон, двойные связи которого мояшо прогидрировать. Этот сульфон является селективным растворителем для экстрагирования ароматических угловодородов из их смесей с парафинами и нафтенами. Другие диены — бутадиен и изопрен — обладают таким же свойством. Селективные растворители этого типа называют сульфоланами [69]. [c.473]

    Гидрированные сульфоны различных бутадиенов поступают в продажу под общим названием сульфоланы . Их получают гидрированием сульфонов соответствующих бутадиенов, которые называют сульфоленами . Продукт, полученный из дивинила, — тетраметнленсульфон, или суль-фолан , [c.226]

    Бутадиен-1,3 можно получать также путем каталитического гидрирования впиилацетилена (стр. 79) — продукта димеризации ацетилена этот метод тоже находит применение в промышленности  [c.74]

    При наличии других двойных связей, как изолированных [251], так и сопряженных [226, 249а], реакция тоже может быть направлена так, что преимущественно будет восстанавливаться тройная связь. Из винилацетилена [168] над палладием. на сульфате бария можно, например, получать бутадиен-1,3 с выходом 69% от теоретического. Поэтому каталитическое гидрирование широко применяется для синтезов полиенов [97, 105, 226, 242, 252, 254]. Из соединений с двумя ацетиленовыми связями долучайт соответственно производные диолефинов [248, 249Ь,с], [c.55]

    НЕФТЕХИМИЧЕСКИЙ СИНТЕЗ, произ-во крупнотоннажных орг. и неорг. продуктов на основе нефт. фракций, прир. газа и газов нефтепереработки. Важнейшие из продуктов Н. с.— этилен, аммиак, пропилеи, бензол, дихлорэтан, этилбензол, толуол, стирол, бутилены, винилхлорид, окись этилеиа, бутадиен, ксилолы, этиленгликоль, изопропиловый и этиловый спирты. Осн. процессы, к-рые использ. в Н. с.,— пиролиз, дегидрирование (в т. ч. окислительное), галогеиирование, окисление, гидратация, гидрирование, алкилирование, аммонолиз и др. [c.376]

    ЭНЕРГИЯ РЕЗОНАНСА В МОЛЕКУЛЕ БЕНЗОЛА. В гл. 13 было показано, что разность 3 ккал/моль между величинами теплот гидрирования 1,3-бутадиена и несопряженпых диепов соответствует энергии делокализации я-электронов в 1,3-бутадиене. [c.562]

    В пром-сти Д.у. получают каталитич. дегидрированием алкаиов шш алкенов и выделением из продуктов каталитич. или термич. крекинга иефти и нефтепродуктов, проводимого с целью получения этилена. Д. у. могут быть также получены дегидратацией насьпценных диолов, ненасы(ценных спиртов, дегидрогалогенированием насьпценных дигалогенидов, частичньпи[ гидрированием ви-иилацетиленов, расщеплением 1,4-диаминов и др. Для качеств. и количеств, определения Д. у. используют их р-цию с малеиновым ангидридом, приводящую к получению аддуктов со след, т.пл. бутадиен 103-104°С, изопрен 63 64 °С, пиперилен 62 °С, 2,3-диметилбугадиен 78-79 °С. [c.54]

    При исследовании состава продуктов реакции при гидрировании диеновых углеводородов нелегко бывает ответить на вопрос, не искажен ли этот состав протеканием сопутствующих реакций изомеризации олефинов. Считается, что поскольку на Ки-, ЯЬ-, Оа-, 1г- и Р1-катализаторах отношение цис-бу1е -21транс-бупи-2 равно величине, получаемой также при изомеризации бутена-1 на зтих катализаторах, то бутадиен-1,3 вначале гидрируется до бутена-1 с последующей его изомеризацией перед десорбцией в газовую фазу [101]. [c.67]


Смотреть страницы где упоминается термин Бутадиен гидрирование: [c.366]    [c.66]    [c.9]    [c.23]    [c.155]    [c.9]    [c.414]    [c.45]    [c.153]    [c.460]    [c.545]    [c.545]    [c.582]    [c.498]    [c.98]    [c.507]    [c.228]    [c.334]    [c.337]   
Органическая химия (1990) -- [ c.137 ]

Производство мономеров и сырья для нефтехимического синтеза (1973) -- [ c.122 ]

Новые воззрения в органической химии (1960) -- [ c.271 ]

Химия и технология моноолефинов (1960) -- [ c.324 ]




ПОИСК





Смотрите так же термины и статьи:

Бутадиен Дивинил гидрирование

Бутадиен теплота гидрировании



© 2025 chem21.info Реклама на сайте