Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Коллоидные электролиты определение

    Ионы одних металлов, например хрома, в обычных условиях разряжаются на катоде путем проникновения через образующуюся на поверхности электрода пленку. На других металлах пленка образуется лишь при введении в электролит определенных поверхностно-активных или коллоидных веществ. В некоторых случаях добавки поверхностно-активных веществ являются стабилизаторами пленки, образующейся на поверхности электрода в результате прохождения тока, как например, при электроосаждении никеля. [c.234]


    Если к коллоидному раствору добавлять электролит, то при его определенной концентрации (порог коагуляции) начнется коагуляция коллоидных частиц. Чем больше к данному коллоидному раствору прибавлено электролита, тем больше скорость коагуляции. При некоторой концентрации электролита величина дзета-потенциала падает до нуля. При этом все столкновения частиц приводят к коагуляции, скорость коагуляции достигает максимума. Дальнейшее увеличение концентрации электролита уже не будет влиять на скорость коагуляции. [c.425]

    Такой металл, как алюминий, представляет- особый интерес, поскольку его присутствие показывает, что поверхность образца может быть модифицирована за счет присутствия на ней алюмосиликатных групп, которые оказывают воздействие на поведение коллоидных частиц. Алюминий на поверхности кремнезема может быть определен экстракцией высушенного кремнезема хлористым водородом с последующим анализом экстракта. Карбонаты и органические вещества оказываются важными в том смысле, что карбонат действует как дополнительный электролит, и может потребоваться коррекция при титровании основания, а органические вещества (обычно получаемые экстракцией низкомолекулярного полимера из ионообменной смолы) могут оказывать воздействие на поведение кремнезема в неко- [c.467]

    Ввиду сложного состава таких коллоидных систем защитные свойства силикатов сильно зависят от pH среды, температуры и содержания солей в электролите, способствующих осаждению коллоидных частиц. Устойчивость золей ЗЮг в сильной степени зависит от концентрации водородных ионов. Определенные значения pH раствора способствуют чрезмерному укрупнению частиц [c.184]

    Первоначально некоторыми исследователями предполагалось, что -потенциал коллоидной химии — это то же самое, что электродный потенциал или 8-потенциал электрохимии точнее та его часть, которая соответствует скачку потенциала на границе электрод — электролит. Для такого предположения имелись известные основания, вытекающие из самой природы электрокинетических явлений. Действительно, если граница раздела жидкость — твердое тело в то же время является плоскостью скольжения при относительном перемещении фаз, то -потенциал должен быть равен 8-потенциалу или, вернее, скачку потенциала Если бы это предположение оказалось справедливым и отвечающим опыту, то появилась бы возможность экспериментального измерения скачка потенциала электрод — электролит, а следовательно, и определения абсолютного потенциала электрода. Проверить правильность этого предположения прямым сравнением независимо найденных значений -потенциала и -потенциала нельзя, так как гальвани-потенциал не может быть определен экспериментально. Однако имеется возможность косвенной проверки сопоставлением зависимости -потенциала и 8-потенциала от состава раствора. [c.240]


    Электрофоретический метод основан на процессах коагуляции металлополимерных частиц и структурообразования под действием электрического поля. При этом предусматривается приготовление высокодисперсного порошка металлополимера, суспензии на его основе с использованием неводных сред (ацетона, высших спиртов, предельных и ароматических углеводородов) с обеспечением ее устойчивости, наведение электрического заряда на частицах дисперсной фазы и формирование на электродах металлополимерного осадка с последующей его термообработкой. При электроосаждении образование металлополимерных покрытий происходит в результате двух одновременно протекающих процессов — электрофоретического осаждения полимера и электролитического выделения металла из коллоидных растворов полимера в электролите. Регулируя с помощью поверхностно-активных веществ заряд частиц и изменяя условия электрохимического осаждения полимера и выделения металла, можно получать покрытия определенного состава. [c.175]

    Если отфильтровать осадок иодида серебра и промыть его, то адсорбированный им коагулирующий электролит будет в большей части отмыт, а так как осадок содержит в себе адсорбированные ранее иодид-ионы, то часть его может вновь образовать коллоидный раствор. Этот процесс называется пептизацией. В химико-аналитической работе пептизация очень часто мешает промывать осадки, такие, например, как фосфоромолибдат аммония или гидроокись алюминия, но затруднение это может быть устранено добавлением подходящего электролита к промывной жидкости. Явление пептизации может быть вызвано и противоположной причиной — ионами, сильно адсорбирующимися осадком. Так, было обнаружено, что хромат-ионы оказывают пепти-зирующее действие на осадок хлорида серебра. Это является причиной того, что при некоторых условиях AgJ не коагулирует в точке эквивалентности, когда производят определение иодидов по Мору, а остается диспергированным из-за стабилизирующего действия хромата. По этой причине иодиды и роданиды нельзя определять методом Мора при обычном ходе анализа. [c.220]

    Методы оценки устойчивости дисперсных систем основаны на двух принципах 1) измерение времени, в течение которого система способна расслаиваться (П. А. Ребиндер), 2) определение количества коагулирующего агента, которое необходимо добавить к системе для того, чтобы вызвать потерю устойчивости. Эти направления оценки устойчивости дополняют одно другое, но на практике чаще прибегают к методам второго направления, т. к. они требуют меньше времени. Чаще всего оценивают устойчивость золя величиной порога коагуляции. Принимается, что чем он выше, тем устойчивее коллоидный раствор. Различие в порогах коагуляции коллоидных растворов ионами резко снижается с возрастанием валентности иона, поэтому обычно устойчивость оценивается порогами коагуляции по отношению к одновалентным ионам. Электролит, выбранный для измерения порога коагуляции, не должен вызывать побочных химических реакций, например, образовывать осадок с ионами диффузного слоя. [c.192]

    Коагуляция гидрофобных золей электролитами. Находящийся в коллоидной системе в качестве третьего компонента ионный стабилизатор (растворимый в воде электролит) своим присутствием препятствует процессу коагуляции, т. е. сообщает золю определенную устойчивость. Стабилизирующее действие-ионогенной группы имеет двоякий характер и связано с возникновением двойного электрического слоя вокруг ядра коллоидной частицы. Противоионы, образующие наружный диффузный слой, сильно гидратированы, что обеспечивает их связь с дисперсионной средой. Те же противоионы с другой стороны связаны электростатическими силами с ионами, прочно адсорбированными ядром. Таким образом, ионный стабилизатор создает непрерывный переход от нерастворимого ядра к дисперсионной среде. Внешняя сильно гидратированная ионная атмосфера вокруг частицы является важным фактором устойчивости золей. [c.375]

    С осаждаемыми элементами таннин не образует соединений определенного состава, и часто его применение основано на способности усиливать действие других реагентов. В некоторых случаях он придает осадкам требуемые физические свойства, иногда способствует осаждению, коагулируя коллоидные соединения, и, наконец, по причинам, пока еще не выясненным, вызывает выделение осадков в тех случаях, когда в его отсутствие они не образуются. Таннин применяется в присутствии таких различных но характеру реагентов, как аммиак, соляная кислота и некоторые органические соединения, например уксусная, винная, салициловая и щавелевая кислоты или их соли. При осаждении таннином обычно требуется более или менее тщательное регулирование концентрации ионов водорода в растворе. Это осаждение всегда проводят из содержащих электролит горячих растворов. При действии таннина выделяются объемистые хлопьевидные осадки, отфильтровывание которых не вызывает затруднений, особенно если вводить мацерированную бумагу и применять умеренное отсасывание. Если для дальнейшей работы используют фильтрат, таннин в нем можно легко разрушить обработкой дымящей азотной кислотой. [c.140]


    Блестящие осадки никеля состоят из округлых кристаллов малых размеров, не имеющих ясно выраженных граней. При электроосаждении в электролитах с блескооб-разователями радиус этих округлостей возрастает, что способствует увеличению блеска. Что же касается причин образования на катоде блестящих электролитических осадков, то образование на катоде блестящих электролитических осадков связано с наличием на поверхности катода пленки, часто коллоидного типа, которая играет определенную роль в подводе разряжающихся ионов к поверхности электрода (так называемый диффузионногидродинамический фактор). Такая пленка образуется лишь при введении в электролит определенных по-верхностно-активных веществ. В некоторых случаях добавки поверхностно-активных веществ являются стабилизаторами пленки, образующейся на поверхности катода при прохождении тока (например, выпадение гидроокиси никеля при электролизе никеля). [c.127]

    Малое значение и непостоянство осмотического давления лиозолей являются причиной того, что осмометрия, а также эбулио-скопия и криоскопия не применяются для определения численной концентрации или размера коллоидных частиц. Следует, впрочем, заметить, что осмометрические, эбулиоскопические и криоскопиче-ские методы нельзя использовать для определения размера коллоидных частиц не только вследствие указанных причин, но и из-за обычного присутствия в лиозолях электролитов. При очистке лиозолей, например диализом, вместе с посторонними электролитами может удаляться и стабилизующий электролит, что приводит к нарушению агрегативной устойчивости системы, укрупнению частиц и, следовательно, к получению неправильных значений осмотического давления. Кроме того, на результатах осмометрических определений сильно сказывается так называемое мембранное равновесие ), или равновесие Доннана. Это равновесие устанавливается в результате сложного распределения ионов между коллоидным раствором в осмотической ячейке и внешним раствором, о чем подробно сказано в гл. XIV. [c.68]

    Основная причина почвенной коррозии — наличие воды. Даже при минимальной влажности почва становится ионным проводником электрического тока, т.е. представляет собой электролит. К почвенной коррозии применимы основные закономерности электрохимической коррозии, справедливые для жидких электролитов. Однако электрохимический характер почвенной коррозии имеет особенности, отличающие ее от коррозии при погружении металла в электролит или от коррозии под пленкой влаги. Это связано с тем, что почва имеет сложное строение и представляет собой гетерогенную капиллярно-пористую систему. Почвы обладают водопроницаемостью и капиллярным водоперемещением, они накапливают и удерживают тепло и вместе с тем снижают испаряемость влаги. Если вода находится в порах или в виде поверхностных пленок на стенках пор, то ее связь с почвой имеет физико-механический характер. При этом влага удерживается в почве в неопределенных соотношениях. Другой вид связи — физико-химическая, при которой возникают коллоидные образования почвы. Возможна также химическая связь, которая характеризуется строго определенным молекулярным соотношением компонентов, например при образовании гидратированных химических соединений. [c.41]

    Когда необходимо загустить жидкости, то обычно применяются рыхлые, объемистые кремнеземные порошки, а не концентрированные золи. Точно так же, как кремнезем, ставший неполярным в результате его обработки гидрофобизующим реагентом, агрегирует в воде с образованием густой массы, так и гидрофильный кремнезем агрегирует в неполярных жидкостях до состояния геля. Следовое содержание воды помогает сцементировать гидрофильные частицы кремнезема вместе в трехмерную сетку в масляной среде. Уайтман и Чессик [694] исследовали механизм разрушения геля путем введения определенных добавок. Коллоидный кремнезем загущает сернокислотный электролит в процессе хранения аккумуляторных батарей [695]. Порошок пирогенного кремнезема используется как загуститель в полиэфирных смолах, маслах, эпоксидных клеящих вещест- [c.604]

    Коагуляция коллоидных частиц вследствие адсорбции противоио-яов является о-братимым процессом. Процесс, обратный коагуляции, называется пептизацией. Необходимо соблюдать особые предосторожности в процессе про-мывания с коагулированного осадка при гр.ави-метрическом определении, чтобы предотвратить пептизацию и прохождение осадка через фильтр. Когда коагуляция сопровождается нейтрализацией заряда, как в случае осаждения хлорида сереб ра, пептизация будет иметь место, если осадок промывать чистой водой. Чтобы этого избежать, промывная жидкость должна содержать такой электролит, как азотная кислота. Он улетучивается в процессе последующего высушивания или прокаливания осадка и, тем -самым, не влияет на чистоту осадка и яе искажает массу осадка. [c.228]

    Многочисленные случаи расслаивания коллоидных систел были подробно изучены де-Ионгом. Если к раствору желатины при определенном значении pH прибавить электролит, то золь разделяется на два слоя, из которых один — концентрированный (коацерват), а другой — разбавленный. Такое же явление наблюдается при смешении золей желатины и гумми- арабика. Это явление, получившее название коацервацин, имеет большое значение в биологии, а также в различных отраслях промышленности. Точного объяснения этого явления до сего времени не найдено. Так как коаце.рваты содержат до 80—90% жидкости, то было сделано допущение, что между частицами действуют силы дальнего действия. [c.239]

    Правило знака заряда. Все электролиты в определенной концентрации способны вызвать коагуляцию, причем коагулятором в электролите является только тот его ион, который несет заряд, противоположный знаку заряда коллоидной частицы, т. е. для положительных золей, например для золя Ре(ОН)з, коагуляторами являются только анионы, а для отрицательных, например для золей AsjSg, Ag, Au, канифоли, целлюлозы,—только катионы. [c.134]

    Осаждение хромового покрытия протекает при наличии на катоде коллоидной пленки, которая образуется сразу же при включении тока. По мнению большинства исследователей, роль посторонних. анионов (например сульфатов) состоит в разрыхлении и частичном растворении этой пленки. А. Т. Баграмян, М. А. Шлугер предложили другую схему процесса, заключающуюся в том, что введение в электролит посторонних анионов не разрушает пленку, а, наоборот, способствует ее образованию и уплотнению. М. А. Шлу-гером был определен химический состав катодной пленки при электроосаждении хрома, который оказался весьма стабильным несмотря на изменение соотношения СгОз H2SO4 в электролите от 100 до 25 и содержал (в %) r(VI)—66,9, Сг (III)—21,8, H2SO4—11,3. [c.187]

    Коагуляция гидрофобных золей электролитами. Находящийся в коллоидной системе в качестве третьего компонента ионный стабилизатор (растворимый в воде электролит) своим присутствием препятствует процессу коагуляции, т. е. сообщает золю определенную устойчивость. Стабилизующее действие ионогенной группы имеет двоякий характер и связано с возникновением двойного электрического слоя вокруг ядра коллоидной частицы. Противоионы, образующие наружный диффузный слой, сильно гидратированы, что обеспечивает их связь с дисперсионной средой. Те же противоионы с другой стороны связаны электростатическими силами с ионами, прочно адсорбированными ядром. Таким образом, ионный стабилизатор создает непрерывный переход от нерастворимого ядра к дисперсионной среде. Внешняя сильно гидратированная ионная атмосфера вокруг частицы является важньий фактором устойчивости змей, препятствуя слипанию коллоидных частиц. Строение диффузного слоя обусловливает возникновение электрокинетического потенциала, проявляющегося при перемещении частиц. Все остовы мицелл (гранулы), находящиеся в золе данного вещества, имеют заряд одного и того же знака (например, все гранулы в золе АзаЗ  [c.306]

    Если электролит в коллоидный раствор вводят не сразу, а небольшими порциями через определенные промежутки времени, наблюдается явление привыкания. Привыканием называется повышение устойчивости золя к коагулируюшему действию электролита при уменьшении скорости его поступления. Так, например, коагуляция золя мышьяка(1П) сульфида с отрицательно заряженными частицами происходит, когда к 20 мл коллоидного раствора быстро добавляют 32 капли раствора бария хлорида. Если же каждый день добавлять только по четыре капли, то для коагуляции необходимо уже 56 капель того же раствора. [c.515]


Смотреть страницы где упоминается термин Коллоидные электролиты определение: [c.385]    [c.95]    [c.61]    [c.208]    [c.60]    [c.385]    [c.208]    [c.173]   
Химия коллоидных и аморфных веществ (1948) -- [ c.212 ]




ПОИСК





Смотрите так же термины и статьи:

Коллоидные определение

Коллоидные электролиты

Электролиты определение



© 2025 chem21.info Реклама на сайте