Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Поток в переходной области

    Таким образом, воспламенение твердого тела тождественным образом связано с переходом реакции из кинетической области в диффузионную. Обратно, в случае достаточно сильно экзотермической реакции, диффузионная область есть одновременно неизбежно и область значительного разогрева, не зависящего от скорости газового потока. Этот результат является в высшей степени естественным. Диффузионная область есть область, в которой концентрация реагирующего вещества в объеме отличается от концентрации у поверхности. Естественно, что в этой области и температура у поверхности должна отличаться от температуры в объеме. Переход из кинетической области в диффузионную и обратно происходит скачком при критических условиях воспламенения и потухания величина скачка тем больше, чем больше скорость газового потока. Переходная область между диффузионной и кинетической в рассматриваемом случае отсутствует, так как ей отвечают неустойчивые тепловые режимы. [c.395]


    Анализируя уравнение (XV,10), необходимо иметь в виду, что газовый поток относительно твердых частиц вблизи отверстия для некоторых материалов и определенных отверстий находится в переходной области между ламинарным и турбулентным режимами. Возможно, именно поэтому данные по истечению при высоких напорах, соответствующие, следовательно, повышенным относительным скоростям газа, отклоняются от корреляции, основанной на законе Дарси. [c.575]

    При решении практических задач, связанных с определением мер пожарной безопасности открытых технологических установок, например продолжительности нагревания технологического оборудования или строительных конструкций до критической температуры, важно знать размеры и положение области пламени, переходной области, конвективных потоков и форму образующей конвективной струи (внешняя задача), а также характеристики элемента установки (материал, толщина, условия прогрева и т.п.), определяющие параметры так называемой внутренней задачи. [c.19]

    Многие достижения теории теплообмена и гидродинамики основаны на понятии пограничного слоя, также предложенного Прандтлем. Оно позволило мысленно разделить турбулентный поток на три характерные зоны ламинарный слой, переходную область и турбулентное ядро. [c.264]

    Между зонами ламинарного и турбулентного течений всегда существует более или менее протяженная переходная область. Относящиеся к этой области данные характеризуются большим разбросом, что обусловлено часто неизвестной степенью турбулентности внешнего потока, а отчасти возмущениями, вносимыми передней кромкой, шероховатостью поверхности и т. д. Рекомендуемые корреляционные зависимости соответствуют усредненным значениям для теплообменников и аналогичных технических устройств. Необходимо учитывать большую степень неопределенности этих данных. [c.93]

    Капельки тумана в потоке пара образуются частично в переходной области между снарядным и кольцевым режимами течения и частично из капель, срываемых с вершин волн в области кольцевого течения. На размеры и количество капель тумана существенное влияние оказывает поверхностное натяжение. [c.90]

    Типичные случаи. В табл. 16.1 для ряда типичных теплообменников приведены некоторые оптимальные параметры соответствующих моделей. Заметим, что в каждом из них мощность модельной устаповки составляет менее 10% мощности натурной. В большинстве случаев опыты проводились с целью получить характеристики для целого семейства данных натурных аппаратов. В табл. 16.1 сопоставлены основные параметры опытных и натурных теплообменников. Уменьшение мощности было достигнуто (по крайней мере отчасти) с помощью уменьшения размера теплообменной матрицы. Часто дальнейшее уменьшение мощности достигалось за счет уменьшения разности температур, а в одном случае эффективное уменьшение мощности было достигнуто в результате применения воздуха при атмосферном давлепии вместо гелия при высоком давлении. Это дало возможность уменьшить тепловой поток в 20 раз, сохранив неизменным подогрев на единичном отрезке приведенной длины (отношении длины к диаметру) по сравнению с натурным теплообменником. Интересно заметить, что во всех случаях, кроме одного, режим течения для одного или обоих теплоносителей соответствовал переходной области диапазон чисел Рейнольдса от 500 до 5000). Опыты на моделях имеют особую важность, поскольку нет другого надежного способа выявить влияние отклонений в геометрии, свойственных интересующим нас теплообменникам, в этой переходной области течения. [c.314]


    При увеличении критерия Рейнольдса поток преобразуется из ламинарного в турбулентный. Для аппарата стандартной конструкции этот переход осуществляется постепенно, при значениях Re от 20 до 2000. Функция мощности Ф зависит от критерия Рейнольдса при значениях Re примерно до 300 (область ВС на рис. П-1). В точке С жидкости сообщается достаточная энергия, чтобы началось образование центральной вихревой воронки. Однако отражательные перегородки эффективно противодействуют образованию воронки, и функция мощности Ф в этом случае зависит от величины критерия Рейнольдса при Re до 10 ОСЮ (область D). Уравнение (П,4) справедливо для переходной области значений критерия Рейнольдса. Полностью турбулентному потоку соответствует горизонтальный участок кривой м()Щ-пости на рис. П-1 (область DE). Здесь Ф не зависит от величины критериев Фруда и Рейнольдса. В этом случае [c.35]

    Г — линейная плотность орошения,/сг/(л с к). Экспериментально установлено, что при Ке<25 движение имеет ламинарный характер. В пределах 25<Яе<1000 поток в основном ламинарный, но на поверхности уже появляются характерные волны . Значения 1000<Ке<1500 соответствуют переходной области, а при Не>1500 движение имеет турбулентный характер. [c.52]

    Теплоотдача при переходном режиме. Переходный режим в области значений Не = 2200 10000 существенно отличается от ламинарного режима гидродинамическими свойствами потока и механизмом переноса тепла коэффициент теплоотдачи при переходном режиме значительно выше, чем при ламинарном. Для переходной области непригодны уравнения (276) и (280). Коэффициенты теплоотдачи наиболее надежно определяют непосредственно из опыта, но приближенно их можно вычислить по функции В = /(Не, =--  [c.118]

    Рассмотрим один полуэмпирический подход к определению параметров в переходной области. Область перехода заменим одной тачкой, а в качестве условия сращивания решений для ламинарного и турбулентного режимов течения используем непрерывность изменения толщины потери импульса. Это условие является наиболее оправданным с физической точки зрения, так как изменение толщины потери импульса характеризует воздействие вязких сил и тесно связано с величиной сопротивления. В качестве примера рассмотрим обтекание плоской теплоизолированной пластины потоком несжимаемой жидкости. Интегрируя уравнение импульсов (62) от О до I, получим соотношение между коэффициентом сопротивления пластины длиной I и значени- [c.312]

    Считают, что обычно при промышленном применении сжигания топлива в турбулентном потоке решающее значение имеют аэродинамические факторы, в частности турбулентное смешение, а не химизм сгорания [1]. Поэтому для более глубокого понимания природы этих пламен важное значение имеют исследования хоЛодной струи. Можно убедиться, что многие системы сгорания в струе удается удовлетворительно моделировать при помощи холодных струй, хотя в литературе отмечается [2], что обычно невозможно создать изотермическую модель, полностью гидравлически подобную системе сжигания с выделением тепла. Все н<е существуют три случая, когда принятие соответствующей системы допущений позволяет получить при помощи модели правильные результаты в отношении столь важного показателя, как увлечение, инжекция струи. Одним из таких случаев является система, в которой поток высококалорийного топлива поступает через сопло малого диаметра в большую камеру с медленно движущимся потоком воздуха [3]. Второй случай — это система, в которой объемные расходы воздуха и топлива выражаются величинами одинакового порядка и оба потока поступают в турбулентную систему через отверстия приблизительно одинаковых линейных размеров [4]. Третий случай, указываемый цитируемым автором, относится к специальному устройству, когда расход находится в переходной области между ламинарным и турбулентным режимами [c.296]

    При эффективной высоте выбросов в пределах 2,2 Нг <Н<1 < 3,5 Нзц имеет место переходная область. В этой области на распространение вредных веществ влияет атмосферная турбулентность и турбулентность, генерированная срывами потока ветра на кромках зданий. [c.65]

    Характеристики устойчивости течений к воздействию малых возмущений рассматривались в работах [121] (течение 3), [58, 120] (течение 4), [112] (течение 5). Отметим, что наиболее подробно исследовались течение / и все разновидности течения 2. Для них получены характеристики в ламинарной и переходной областях и даже в области развитого турбулентного течения. Поэтому на примере течения 2 — вертикального течения около поверхности, нагреваемой постоянным тепловым потоком, — детально рассматриваются во всех следующих разделах данной главы механизмы процесса перехода к полностью турбулентному течению. [c.10]

    Рассматривая IV и V факелы молено видеть, как хвостовая часть пламени постепенно теряет четкость своего очертания и становится размытой, так как горение в этой части факела становится турбулентным. По мере дальнейшего увеличения скорости газового потока общая длина факела несколько уменьшается, причем ламинарный (нижний) участок пламени укорачивается, а турбулентный — увеличивается. Эта картина характерна для переходной области. [c.13]


    Интенсивность теплоотдачи при вынужденном течении жидкости. При существенном не-догреве жидкости, подаваемой на вход равномерно обогреваемой трубы, температурный профиль стенки по длине канала имеет вид, показанный на рис 2. На начальном участке АВ теплообмен происходит по закону конвективной теплоотдачи к однофазному теплоносителю. Далее (участок ВС) следует переходная область, в которой начинается кипение и происходит вырождение влияния скорости потока на интенсивность теплоотдачи. За переходной областью находится участок развитого поверхностного кипения СО. На этом участке интенсивность теплоотдачи остается величиной постоянной, т. е. не зависит от скорости потока и температуры жидкости [20—22]. [c.86]

    За переходной областью возникает турбулентный (автомодельный по отношению к Ке) режим (отрезок СО на рис. 6-15, а). При этом поток, непосредственно прилегающий к цилиндру, является фактически установившимся. Справа от цилиндра находятся два слоя, образующие вихри, которые неустойчивы и распадаются в беспорядочные структурные образования, типичные для турбулентности (Ке = 2 10 режим В на рис. 6-15,6). Такая свободная турбулентность развивается в течениях со сдвигом без непосредственного влияния твердых границ потока. [c.116]

    Под действием центробежной силы, возникающей при вращении любого типа мещалки с достаточно больщой частотой, жидкость стекает с лопастей в радиальном направлении. Дойдя до стенки сосуда, этот поток делится на два один движется вверх, другой-вниз. Возникновение радиального течения приводит к тому, что в переходной области создается зона пониженного давления, куда и устремляется жидкость, текущая от свободной поверхности жидкости и от дна сосуда, т.е. возникает аксиальный (осевой) поток, движущийся в верхней части сосуда сверху вниз к мешалке. [c.151]

    По мере турбулизации потока (10 < Re < 10 ) формируется вынужденная циркуляция, и в аппарате не только существуют периферийная и переходная области, но и намечается область центральных цилиндрических вихрей. [c.152]

    Опыт показывает, что с увеличеннем скорости движения жидкости при определенных граничных условиях (точнее, в переходной области) происходит качественное изменение потока. [c.64]

    Диффузия в переходной области. Часто пористую структуру катализатора представляют в виде системы капилляра радиуса г. Характер диффузии зависит от радиуса капилляра г и длины свободного пробега молекул Х. В зависимости от соотношения между г и Л обычно принимают молекулярную г 10Я), кнудсеновскую (г< 0,1Я) и переходную (0,1 1 < г< ЮХ) области. Кроме того, для тонконористых систем большой вклад в общий поток может [c.154]

    В переходной области толщина ламинарного пограничного слоя становится меньше выступов неровностей, и на структуру потока помимо вязкостного напряжения оказывает влияние шероховатость стенок. Поэтому потери напора — функция не только Не, но и отно-сительной шероховатости внутренней поверхности труб Д/г (Д— абсолютная шероховатость г — радиус внутреннего сечения). [c.61]

    Турбулентность внешнего потока. Обычно более раннему переходу способствует турбулентность внешнего потока. В лабораторных экспериментах для турбулизации иограничного слоя и моделирования, таким образом, течений с большими числами Рейнольдса иногда искусственно увеличивают степень внешней турбулентности с помощью специальных решеток. Прн этом существенными являются размер ячеек решетки и ее расположение но отношению к модели, так как в некоторых случаях решетки могут, наоборот, уменьшать турбулентность и, следовательно, затягивать образование переходной области [103]. [c.116]

    В переходной области между ламинарным и турбулентным пограничными слоями данные [17, 18] свидетельствуют о влиянии на числа Ни низкой степени тур-булептпости набегающего потока. Из результатов по массообмену [19], представленных на рис. 2,3, видно, что для корреляции данных, полученных на пластинах с тупой передней кромкой, можно использовать соотношение (9). [c.244]

    На рис. 3,4 результаты расчетов по соотношениям (25) и (26) сопоставлены с экспериментальными данными. Соотношения (19) и (24) и соответственно (21) и (24) включены в рис. 3 и 4 как асимптоты. Несоответствие в переходной области не является неожиданным, поскольку переход зависит и от вторичных эффектов, таких, как турбулентность внешнего потока и шероховатость поверхности. Локальные значения чисел Ми для шпиндельного (Рг=77- --ь170) и моторного (Рг=260- 2600) масел, приведенные в [24], являются более низкими, чем для воды (Рг=5,8). Следовательно, отличие между этими данными и соотношениями (24) и (26) можно объяснить погрешностями эксперимента. [c.277]

    Предприняты [попытки получения корреляций по теплоотдаче в области переходного кипспия. Вероятно, зависимость [74] является наиболее удачной из имеющихся в настоящее время для воды и описывает тепловой поток в области переходного кипения ( ц,) [c.400]

    Как было отмечено ранее, в противоположность системам с безвихревым течением при малых числах Рейнольдса линии потока начинают отклоняться на значительно больших расстояниях перед цилиндром и более плавно расходятся по сторонам. Более сложное соотношение для малых чисел Кнудсена для данного цилиндра (т. е. отношение длины свободного пробега молекул газа к диаметру цилиндра) Х10<.0,25 было выведено Натансоном [596]. Это соотношение переходит в уравнение (У11.4) при 7.10— >0 для переходной области поле скоростей было исследовано [c.300]

    В компактных теплообменниках, использующих в качестве теплоносителя воздух при атмосферном давлении, ввиду малых гидравлических радиусов проходных сечений для воздуха и ограничений по мощности, затрачиваемой на прокачку, рабочий диапазон чисел Рейнольдса составляет 1000 ч- 5000. Другими словами, рабочая область — это переходная область от ламинарного течения к турбулентному. При работе в этой области лyчuJe всего выбирать такую геометрию теплообменной матрицы, которая вызывала бы некоторую турбулентность потока при малых числах Рейнольдса. Кривые рис. 11.7 свидетельствуют о том, что при использовании матрицы из сплющенных труб с рифлеными ребрами (поверхность № 9,68 — 0,870) нерегулярности геометрии вызывают в потоке воздуха турбулентность, достаточную для улучшения коэффициента теплоотдачи при числах Рейнольдса вплоть до 500, при которых коэффициенты теплоотдачи для плоских и рифленых ребер становятся одинаковыми (хотя фактор трения все еще несколько выше для рифленых ребер). Заметим также, что наклон кривых для фактора трения на рис. 11.7 становится более крутым прп числах Рейнольдса, меньших примерно 2000. Это означает, что хотя течение преимущественно является турбулентным, ламинарный подслой в пограничном слое утолщается по сравнению с развитым турбулентным течением. [c.214]

    Макрокинетика топохимических реакций. Изложенное относилось к реакциям, протекающим в кинетической области, когда процессы переноса вещества и теплоты происходят настолько быстро, что не влияют на кинетику процесса. Однако создать такие условия в олыте в большинстве случаев затруднительно, поэтому при осуществлении реакций в промышленности условия чаще всего соответствуют переходной области. В связи с этим в реакционном пространстве возникают градиенты концентраций и температуры и, соответственно, потоки вещества и теплоты. Изучение переноса вещества и теплоты в химическом процессе составляет предмет макрокинетики. [c.173]

    Одной из задач диффузионной кинетики является установление условий, позволяющих определять лимитирующую стадию процесса. При использовании допущения о равнодоступности межфазной поверхности удается найти зависимости между константой наблюдаемой скорости процесса и величинами k T) и и качественно установить границы диффузионной, кинетической и переходной областей [3, 7]. Количественные условия выбора той или иной лимитирующей стадии обычно находятся по опытным данным. Следует яметь в виду, что если лимитирующей стадией является внешняя диффузия (т. е. из ядра потока к поверхности раздела фаз), то наблюдаемая скорость процесса слабо зависит от температуры и сильно — от скорости потока вещества. Если гетерогенный процесс происходит при высоких температуре и давлении и малых скоростях движения вещества, то вероятнее всего лимитирующей стадией является диффузия.  [c.20]

    Вследствие разделения пленки на псевдоламипарную и. турбулентную области возникает проблема определения границы между этими областями следует отметить, что эта проблема достаточно сложна даже применительно к обычным пленкам. На основании экспериментальных зависимостей ах=1а) на рис. 4.8 можно заключить, что параметры переходной области меняются с изменением количества подаваемой воды. Так, возрастает переходное значение ал при увеличении соответствующего ( критического ) значения плотности орошения. Критическое значение, плотности орошения соответствует максимуму / на кривой ал =/(/) и по понятным причинам возрастает, если увеличить расход воды через форсунку. Таким образом, по мере увеличения потока жидкости, образующей пленку (осред-нённой по всей пластине величины /), область перехода от [c.193]

    Позднее была выдвинута модификация модели внезапного замораживания — так называемая модель равновесной рекомбинации [358—360]. В соответствии с ней область замороженного течения заменяется областью, в которой рассматривается только процесс рекомбинации. Модель равновесной рекомбинации дает хорошие результаты при расчете неравновесных течений газовых смесей с компонентами, концентрации которых стремятся к нулю далеко вниз по потоку. Ченг и Ли [376] показали, что в случае течения газа со значительной степенью диссоциации имеется достаточно обширная переходная область от течения почти равновесного к течению с ойределяющей ролью процессов рекомбинации. Область перехода можно разделить на две зоны. Зона течения, примыкающая к равновесной области течения, характеризуется небольшим отклонением от состояния равновесия. За ней следует узкая зона перехода в область рекомбинации. В случае течения с незначительной степенью диссоциации, по данным авторов работы [376], переходная область имеет небольшие размеры. [c.122]

    Рассчитанные отношения w(p)/w(p) показаны на рис. 3.5, из которого видно, что в кинетической (р f HO- OjHBO внешнедиффузионной областях (р<Кк иб-> ) распределения локальных коэффициента обмена мвжно не учитывать. В переходной области (0,1 < Р < 5) )v (P) систематически завышена по сравнению с iv(P) максимально на 1%, т.е. в пределах точности измерения коэффициентов обмена [124] и акшв-ности катализатора. Результаты такого анализа структуры потока, обтекающего элементы зернистого слоя, позволили сделать вывод о том, что для практических расчетов стационарных процессов в неподвижном слое катализатора наружную поверхность зерен можно считать равнодоступной, а процессы переноса характеризовать средним значением коэффициента обмена, определяемым экспериментально. Для нестационарного процесса, возможно, неоднородность обтекания элементов зернистого слоя будет существенна, в этом случае необходим учет локальной структуры потока при построении модели процесса. [c.85]

    Одним из первых длину свободного факела исследовал Джонс [89] результаты его работ представлены на рис. 82 для случая, когда из сопла вытекает горючий газ без примеси первичного воздуха. Верхняя кривая показывает изменение общей длины факела в зависимости от скорости истечения потока. Дл а ламинарной области (скорость меньше 15 м1сек) длина факела почти пропорциональна скорости истечения. Далее происходит скачкообразное уменьшение длины факела, связанное с появлением в верхней части факела турбулентных пульсаций, характерных для переходной области. В переходной области отме- [c.148]

    Иверном [Л. 1] для участка стабилизации потока в трубе при резком его сужении на входе. Все значения критерия Стантона осреднены по длине трубы и поэтому могут непосредственно использоваться при расчетах теплообменника по методике, рассмотренной в гл. 2. Данные, соответствующие переходной области в диапазоне чисел Рейнольдса от 2 500 до 10 000, характеризуются значительной неопределенностью. Для отдельной трубки эти данные могут и не иметь ценности представленные здесь кривые характеризуют типичную картину течения в пучке, состо Лцем из большого числа параллельных трубок, на входе в которые происходит резкое сужение потока, что является типичным для большинства те" лообменников с поверхностью, об разованной круглыми трубами. Не которые типичные данные, полученные непосредственно из опыта, показаны на рис. 10-1 однако переходная область на рис. 7-1 построена не только на основе данных рис. 10-1, но также на основе результатов, полученных и другими исследователями [Л. 2]. Как правило, при проектировании теплообменной аппаратуры следует избегать переходной области, однако для компактных теплообменников наибольший интерес представляет область чисел Рейнольдса от 500 до 15 000 поэтому обойтись без этой области довольно трудно. Даже в том случае, когда расчетное значение числа Рейнольдса равно 10 000, теплообменник при частичной нагрузке может работать в переходной области. Этими кривыми не следует пользоваться при числах Прандтля, выходящих за пределы, характерные для газов. [c.100]

    Не существует различия между температурным и эн-тальпийным коэффициентами восстановления до тех пор, пока теплоемкость может быть принята постоянной. Коэффициенты восстановления, вычисленные таким образом, находятся также в хорошем согласии с измеренными величинами. Для ламинарного. воздушного потока при средних температурах коэффициент восстановления равен 0,84. В турбулентном потоке пограничного слоя воздуха на плоской пластине была измерена величина 0,88. В переходной области между ламинарным и турбулентным пограничными слоями коэффициент восстановления возрастает от величины 0,84 до пика и затем уменьшается до турбулентной величины 0,88 (рис. 10-2). [c.331]


Смотреть страницы где упоминается термин Поток в переходной области: [c.211]    [c.353]    [c.284]    [c.257]    [c.115]    [c.101]    [c.96]    [c.101]    [c.29]    [c.346]    [c.425]    [c.43]   
Научные основы химической технологии (1970) -- [ c.64 ]




ПОИСК





Смотрите так же термины и статьи:

Область переходная



© 2024 chem21.info Реклама на сайте