Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Нернста теория

    Большую роль в развитии электрохимии сыграли открытие М. Фарадеем количественных законов электрохимии, создание Св. Аррениусом теории электролитической диссоциации, В. Нернстом — теории гальванических элементов. Значительный вклад в развитие электрохимии принадлежит русскому ученому Б. С. Якоби, который создал электрохимический метод изготовления точных металлических копий рельефных пред- [c.312]


    Модель двойного электрического слоя, отвечающая этим простейшим представлениям, ириводит к двум возможным значениям -потенциала. Если предположить, что все заряды, находящиеся в растворе, способны перемещаться вместе с жидкостью или при движ( нии твердого тела относительно жидкости пе увлекаться вместе с ним, то -потенциал по величине -будет совпадать с -потенциалом, и его изменение с концентрацией электролита должно подчиняться формуле Нернста. Если заряды, находящиеся в растворе, при относительном движении жидкости и твердого тела связаны только с последним и перемещаются вместе с ним, то -потенциал всегда будет равен нулю. Ни одно из этих следствий, вытекающих из теории Гельмгольца, не согласуется ни с экспериментально установленным соотно1дением между (или й м.ь) и -потенциалами, ни с найденной экспериментально зависимостью -потенциала от концентрации (если не считать, что -потенциал лзожет быть равен нулю в очень концентрированных растворах электролнтов и ири определенном составе раствора, отвечающем изоэлектрической точке). Теория Гельмгольца не объясняет также причины изменения заряда повер> ности металла в присутствии поверхностно-активных веществ при заданном значении -потенциала. Вместе с тем теория конденсированного двойного слоя позволяет получить значения емкости двойного слоя, согласующиеся с опытом, а при использовании экспериментальных значений емко- [c.262]

    Несмотря на недостатки теории Нернста—Бруннера (невозмож-лссть теоретического расчета предельной плотности тока, физическая несостоятельность модели диффузионного слоя), потребовалось почти сорок лет для создания новой, более совершенной теории диффузионного перенапряжения. Успехи в этом направлении были, до тигнуты благодаря применению к явлениям диффузии основных положений тепло- и массопередачи, в частности законов гидродии , [c.311]

    Гальвани-потенциал на границе металл—раствор. Осмотическая теория Нернста [c.217]

    Льюис и Уитмен использовали основное положение Нернста при анализе процессов, протекающих на границе раздела двух фаз. Основные положения двухпленочной теории Льюиса и Уитмена  [c.236]

    Различие в законе для изменения 8 связано с различием в роли конвективной подачи вещ тва вдоль и перпендикулярно к пластинке на разных ее участках. В элементарной теории Нернста теория диффузионного слоя считалась характерной величиной, зависящей в крайнем случае от скорости движения жидкости. Как было показано выше, элементарная теория Нернста оказалась несостоятельной. Точно так же ранее нами уже отмечалось, что толщина диффузионного слоя зависит от свойств диффундирующих частиц (коэффициента диффузии). [c.108]


    Наибольшее применение нашла двухпленочная модель, предложенная Льюисом и Уитменом, заимствованная из теории растворения твердых тел, предложенной Нернстом. [c.136]

    По теории Нернста нормальный потенциал является простой функцией электролитической упругости растворения металла. Его можно было бы вычислить для разных металлов по известным значениям величины Р. Такой расчет провести не удается, поскольку величина Р непосредственно не определяется. Мол<но, однако, оценить (нз известных значений стандартных потенциалов), как изменяется величина Р при переходе от одного электродного металла к другому. Если, например, принять электролитическую упругость растворения, соответствующую стандартному водородному электроду, а 101,3 кПа, то электролитическая упругость растворения бериллия составит примерно кПа, а меди — [c.219]

    Двухпленочная теория массопередачи, разработанная Льюисом и Уитменом более 40 лет тому назад, явилась дальнейшим развитием теории растворения твердых тел, предложенной Нернстом. [c.236]

    В этом случае зависимость предел ,ной плотности тока от коэффициента диффузии также оказывается иной, чем в теории Нернста—Бруннера. [c.313]

    Таким образом, теория Нернста относится лишь к одному слагаемому гальвани-потенциала на границе металл — раствор, а именно — к величине gi. леи, которая и представляет собой нерлстовский потенциал. [c.218]

    Используя теорему Нернста, найдем ф(Г)= Г), что и даст выражение для энергии Гельмгольца как функции своих переменных. В общем случае такой переход к своему потенциалу возможен только тогда, когда допустима экстраполяция Т О К (условие применимости теоремы Нернста), в противном случае переход невозможен. [c.30]

    Это равенство выполняется вследствие того, что кривые, определяющие зависимость /S.Gt°=G T) и АНт°=Н (Т), сближаются при понижении температуры и совпадают между собой уже в окрестности абсолютного нуля и они имеют общую касательную. На этом основании В. Нернст сформулировал теорему о тангенсе угла наклона касательной к обеим кривым в такой форме при температуре, стремящейся к абсолютному нулю для реакций, протекающих между веществами в конденсированной фазе, тепловой эффект равен изменению энергии Гиббса или изменению энергии Гельмгольца, а производные от этих функций равны друг другу и равны нулю  [c.210]

    В обычных условиях перемешивания б = 10 — 10 см, что соответствует десяткам тысяч молекулярных слоев. Такой слой не может удерживаться молекулярными силами. Кроме того, прямые опыты показали, что на расстояниях порядка 10 см от твердой стенки наблюдается движение жидкости, а следовательно, ли нейный закон распределения концентрации теряет свое обоснование. Теория Нернста не позволяет оценить значение потока т теоретически, так как толщина б в ней не вычисляется, поэтому теория является только качественной, а не количественной. Уравнение (404) позволяет найти значение б, исходя из известных величин т, концентраций с и Со и известного коэффициента диффузии Х д, а затем производить количественные расчеты. [c.205]

    В 1914 г. Л. В. Писаржевским было дано новое толкование электродных процессов, позволившее заменить формальную схему осмотической теории Нернста реальной физической картиной. Несколько позже (1926 г.) аналогичные идеи высказаны Н. А. Изгарышевым и А. И. Бродским. По Л. В. Писаржевскому, причинами перехода ионов металла в раствор являются диссоциация атомов металла иа ионы и электроны и стремление образовавшихся ионов сольватиро-ваться, т. е. вступать в соединение с растворителем. Необходимо, следовательно, учитывать два равновесия одно — между атомами металла и продуктами его распада (ионы и электроны) и другое — при сольватации (в водных растворах — гидратации). Таким образом, потенциал металла, погруженного в раствор, зависит от обоих процессов и состоит из двух слагаемых, одно из которых зависит от свойств металла, а второе — от свойств как металла, так и растворителя. Эти новые взгляды, основанные на электронных представлениях, качественно совпадают с современными представлениями, которые, таким образом, были предвосхищены Л. В. Писаржевским задолго до квантовой механики, статистики Ферми и других современных теоретических методов, [c.216]

    В первой количественной теории диффузионного перенапряжения, создаипой главным образом Нернстом и Бруннером на рубеже XIX и XX столетий (1888—1904), учитывается лишь миграция ионов и их диффузия. В теории Нернста — Бруннера предполагается, что все изменение состава электролита сосре.шточено в узком слое раствора, примыкающем к электроду,— в диффузионном слое б. Этот слой [c.303]

    Характерная для физической химии особенность — применение теоретических явлений — отмечалось уже М. В. Ломоносовым, от которого ведет свое начало и само название науки Физическая химия . Соответствующий курс впервые был прочитан М. В. Ломоносовым для студентов в 1752—1753 гг. Им же написан и первый учебник по физической химии — истинной физической химии для учащейся молодежи . В физической химии Ломоносова были предвосхищены ее будущие успехи, которые стали возможны благодаря развитию теоретических методов физики в XIX в. Труды Карно, Майера, Джоуля, Гесса, Клаузиуса, Гиббса, Вант-Гоффа, Нернста в области термодинамики, Максвелла, Больцмана, Гиббса в области молекулярно-кинетической теории и статистической физики составили фундамент и физической химии. Большая заслуга в оформлении ее как учебной дисциплины впервые после М. В. Ломоносова принадлежит [c.7]


    Первы 1 ирпнцип нельзя считать верным поскольку скачок потенциала на границе металл — раствор в общем случае не совпадает с электродным потенциалом, а представляет собой лишь его некоторую часть. Ошибочно также предположение, что э. д. с. электрохи.мнческой системы всегда равна разности двух гальваин-псзтеициалов. Она определяется не двумя, а тремя скачками потенциала, включая потенциал, возникающий в месте контакта дву.х разных металлов. Таким обра,эом, теорию Нернста нельзя считать теорией электродного потенциала и э. д. с. Это — теория гальвани-потенциала металл — раствор, т. е. того слагаемого электродного потенциала и э. д. с., которое зависит от состава раствора. [c.217]

    При помощи этого, а также ряда других методов удалось не только подтвердить сам факт обмена ионами, но и количественно оценить его. Поскольку в обмене участвуют заряженные частицы, то его интенсивность можно выразить в токовых единицах и охарактеризовать токами обмена / . Токи обмена относят к I см2 (I и ) поверхности раздела электрод — раствор они служат кинетической характеристикой равновесия между электродом и раствором при равновесном значении электродного потенциала и обозначаются / . Одни из первых работ по определению токов обмена были выголнены В. А. Ройтером с сотр. (1939). Значения токов обмена для ряда электродов приведены в табл. 10.2. Интенсивность обмена зависит от материала электрода, природы реакции и изменяется в широких пределах. По третьему принципу осмотической теории Нернста токи обмена возникают в результате существования сил осмотического давления раствора и электролитической упругости растворения металла. [c.218]

    Формула Нернста справедлива для электродов первого рода, и область ее применения ограничена электродами этого типа. Необходимо, однако, отметить, что эту ограниченность не следует считать непреодолимым недостатком теории Неристз. Так, например, Петерс (1898) показал, что, используя основные представления Нернста, можно получить согласующиеся с опытом уравнения для редокси-электродов. Идеи Нернста былу развиты в работах Батлера (1924), которому удалось кинетическим путем вывести уравиения применительно к различным типам электродов. [c.220]

    Из теории Нернста следует вывод о независимости стандартных электродных потенциалов от природы растворителя, поскольку величина Р, определяющая нормальный, или стандартный, потенциал электрода, не является функцией свойств растворителя, а зависит липJь от свойств металла. Одиако ни опыт, ни теоретические соображения не согласуются с подобного рода представлениями, что также приводит к необходимости пересмотра физических предпосылок теории Нернста. [c.220]

    Осмотическая теория э.д.с. Нернста основана на классической теории электролитической диссоциации, поэтому она сохраняет основной недостаток теории Аррениуса — отождествление свойств растворов электролитов со свойствами идеальных систем. Развитие теории э.д.с. и электродного потсчщиала повторило ход развития теории растворов электролитов. Так, введение понятий о коэффи-цисн1е активности (как о величине, связанной с межионным взаимодействием) и об активности (как эффективной концентрации), явившееся крупным шагом вперед в развитии теории растворов, позволило получить на основе теории Нернста качественно верную зависимость электродного потенциала от состава раствора. Учет взаимодействия между растворенным веществом и растворителем, на необходимости которого настаивал Д. И. Менделеев, и в особенности учет возможности образования в растворах гидратированных или сольватированных ионов (А. И. Каблуков) были важными вехами в развитии теории раство зов электролитов. Они позволили найти причину диссоциации электролитов на ионы. Ионная сольватация должна играть существенную роль и в процессе установления равновесия между электродо и раствором. [c.220]

    Такнм образом, по Писаржевскому, переход ионов из металла в раствор совершается не за счет физически неясной электролитической упругости растворения металла, а в результате его взаимодействия с молекулами растворителя. Явление электролитической диссоциации электролитов и возникновение электродного потенциала основаны, следовательно, на одном и том же процессе сольватации (в случае водных растворов — гидратации) ионов. Из уравнения реакции (10.20) следует, что при растворении образуются не свободные, а сольватированные ионы, свойства которых зависят от и >ироды растворителя. Поэтому в отхичие от теории Нернста значение стандартного потенциала данного электрода должно меняться при переходе от одного растворителя к другому. Подобная зависимость была действительно обнаружена и послужила предметом исследований многих авторов (Изгарышева, Бродского, Плескова, Хартли, Измайлова и др.). Было установлено, что изменение электродного потенциала при переходе от одного растворителя к другому оказывается тем большим, чем М зньше радиус и выше заряд иона, участвующего в электродной реакции. По Плескову, меньше всего изменяются потенциалы цезиевого, рубидиевого и йодного электродов, в установлении равновегия на которых участвуют одновалентные ионы значительных размеров. Напротив, эти изменения особенно велики в случае ионов водорода и поливалентных катионов малых размеров. Именно такой зависимости электродных потенциалов от природы растворителя следовало ожидать на основе представлений Писаржевского о роли сольватационных явлений в образовании скачка потенциала металл — раствор. Для количественного сравнения потенциалов в разных растворителях применяют в качестве стандартного нулевого электрода цезиевый [c.221]

    Си, так как рассматривается катод гый -процесс). Таким образом, градиент концентрации, определяющий скорость диффузии, равен (с о—Ск)/б. Наконец, в этой теории принимается, что концентрации и активности совпадают (хотя это предположение и не делалось ее авторами, поскольку в те годы еще не существовало понятия активности) и что числа нерепоса не зависят от состава раствора. Последнее допущение оправдывается лищь в случае растворов, содержащих бинарный электролит, подвижности ионов которого почти одинаковы. Основные положения теории диффузионного перенапряжения Нернста—Бруннера целесообразно рассмотреть поэтому на примере системы [c.304]

    Таким образом, диффузионное неренапряжение определяется в первую очередь предельной плотностью тока щ1) пли величиной константы /Сд, Предельная плотность тока по теории Нернста — Бруннера, как это следует из ург.внения (15.28), зависит прежде всего от коэффициента диффузии соответствующих частиц , их заряда 2 , начальной концентрации Сг° (или, что то же самое, концентрации за пределами диффузионного слоя) и толщины диффузионного слоя б. Числа переноса данного внда ионов ii, как ул< е отмечалось, могут быть сделаны равными нулю кроме того, миграция вообще отсутствует в случае незаряженных частиц. Коэффициент диффузии можно либо рассчитать, либо заимствовать из экспериментальных данных определение начальной концентрации С также не представляет затруднений. Наименее определенной величиной является толщина диффузионного слоя, которая не может быть рассчитана в рамках теории Нернста—Бруннера. Ее определяют экспериментально, чаще всего из измерения предельной илотности тока. Опытные данные показывают, что б весьма мало зависит от состава раствора, но замс но меняется при изменении режима движения электролита. Эту зависимость можно передать эмпирической формулой [c.310]

    Из уравнения (15.45) с.аедует, что при естественной конвекции в отличие от теории Нернста — Бруннера предельная плотность тока зависит от коэффициента дифф узии в степени Л и от концентрации в степени Л- Эти следствия нз уравнеиия ( 5.45) были подтверждены недавно непосредственкыми экспериментами. [c.312]

    Исторически первой теорией массопередачн была пленочная теория Нерн-ета [1], предположившего, что к поверхности твердого тела прилегает неподвижный слой жидкости, массопередача в котором носит стационарный характер. Эти предположения сразу же приводят к выводу о линейном распределении концентрации в гипотетической пленке и прямой пропорциональности между потоком массьг (/) и коэффициентом молекулярной диффузии (О). Теория Нернста, однако, не дает возможности определить величину /, поскольку она не позволяет вычислить толщину плепки. [c.169]

    Другая теория, весьма близкая к взглядам Нернста, была предложена-Лэнгмюром [2]. Для поверхности раздела твердое тело — жидкость Лэнгмюр также постулировал неподвижность пленки, в которой сосредоточено основное сопротивление массопередаче. Для систем жидкость — газ он предполагал лищь отсутствие относительного движения жидкостной и газоЬой пленок, допуская при.этом возможность строго ламинарного движения (с однородным профилем скоростей) в направлении, параллельном поверхности раздела. Это предположение не изменило основных выводов пленочной теории. Х отя гипотеза о неподвижных пленках и вытекающий из нее вывод о линейной зависимости между коэффициентами массоотдачи и молекулярной диффузии оказались неверными, пленочная теория сыграла пoлoжиteльнyю роль в развитии представлений о мас-сообмене. Предположение об особом значении процессов, происходящих в тонком слое вблизи поверхности раздела фаз, допущение о наличии термодинамического равновесия на границе раздела фаз, а также вывод этой теории об аддитивности диффузионных сопротивлений — в большинстве случаев сохраняют свое значение и в настоящее время. [c.169]

    Возникновение электрохимии как науки связано с именами Гальвани, Вольта и Петрова, которые на рубеже XVHI и XIX веков открыли и исследовали электрохимические (гальванические) элементы. Деви и Фарадей в первые десятилетия XIX века изучали электролиз. Быстрое развитие электрохимии в конце XIX века связано с появлением теории электролитической диссоциации Аррениуса (1887) и с работами Нернста по термодинамике электродных процессов. Теория Аррениуса развита Дебаем и Гюккелем (1923), которые разработали электростатическую теорию. [c.384]

    Теории перенапряжения различаются между собой по тому, какая из указанных стадий считается наиболее медленной, а следовательно, и лимитирующей скорость общего электрохимического процесса. Так, наименьшей скоростью по Мюллеру является скорость последней стадии (образование и выделение газообразной фазы) по Леблану — стадии дегидратации по Смитсу— стадии разряда ионов по Тафелю — процесса молизации по Нернсту — стадии адсорбции. [c.622]

    Во второй половине XIX столетия голландские ученые К. Гульдберг и П. Вааге и русский физико-химик Н. Н. Бекетов сформулировали закон депствущих масс. В это же время П. Дю-гем выводит уравнение для расчета термодинамических свойств растворов (уравнение Гиббса—Дюгема). М. Планк (1887 г.) разделяет процессы на обратимые и необратимые, В. Нернст (1906 г.) формулирует тепловую теорему, а М. Планк в 1912 г. — третий закон термодинамики. Значительное влияние на развитие термодинамики химических процессов оказали работы Я. Вант-Гоффа (понятие о химическом сродстве, изобаре и изотерме), Рауля Ф., А. Л. Брауна и А. Ле-Шателье. [c.14]

    Можно ли диффузионную теорию Нернста применять для объяснения любого гетерореппого процесса  [c.439]

    Согласно теории Нериста, к поверхности твердого тела прилегает тонкий слой неподвижной жидкости толщиной 6, в котором происходит диффузия растворяющегося вещества. За пределами этого слоя движение жидкости, увлекающей растворенное вещество, приводит к поддержанию постоянства концентрации во всем остальном объеме раствора. Толщина б получила название толщины диффузионного слоя Нернста. Она зависит только от скорости перемещения диффундирующего вещества [c.205]

    Нернст полагал, что электродный потенциал металла возникает в результате обмена ионами между металлом и раствором, но в качестве движущих сил этого обмена ионами Нернстом были приняты электролитическая упругость растворения металла Р и осмотическое давление растворенного вещества я. На этой основе им была создана качественная картина возникновения скачка потенциала на границе металл—раствор и количественная зависимость величины скачка этого потенциала для металлических электродов первого рода от концентрации раствора. Из теории Нернста, в частности, следовал вывод о независимости стан-дартньга ( нормальных ) потенциалов электродов от природы растворителя, поскольку величина электролитической упругости растворения Р, определяющая нормальный (или стандартный) потенциал металла, не являлась функцией свойств растворителя, а зависела только от свойств металла. [c.216]

    Развитию гипотезы электролитической диссоциации способствовали работы И. А. Каблукова, Нернста, Джонса и др. Особенно большое значение в формировании правильного представления о взаимодействии между частицами в растворах электролитов имели работы Каблукова. Основываясь в значительной степени на обихей теории растворов Менделеева, он утверждал, что ионы могут вступать во взаимодействие с водой, образуя гидраты переменного состава). Каблуков в своей докторской диссертации (1891) писал По нашему, вода, разлагая частицы растворенного тела, входит с ионами в непрочные соединения, по мнению же Аррениуса, ионы свободно двигаются подобно тем отдельным атомам, которые происходят при диссоциации молекулы галоидов при высокой температуре . Дальнейшее развитие науки полностью подтвердило правильность этого вывода И. А. Каблукова. [c.382]


Смотреть страницы где упоминается термин Нернста теория: [c.144]    [c.224]    [c.409]    [c.210]   
Электрохимия растворов издание второе (1966) -- [ c.427 , c.428 ]

Курс теоретической электрохимии (1951) -- [ c.184 , c.227 ]

Физико-химия коллоидов (1948) -- [ c.201 ]




ПОИСК





Смотрите так же термины и статьи:

Внешний массоперенос и коэффициент массопереноса. Диффузионный слой и пленка Нернста. Эмпирические формулы теории подобия

Конвективные массоперенос и диффузия. Гидродинамический и диффузионный пограничные слои. Сопоставление теории Нернста с теорией конвективной диффузии

Нернст

Нернста Планка теория

Нернста осмотическая теория

Нернста теория диффузии

Нернста теория диффузии уравнение

Нернста теория диффузии электроли

Нернста теория диффузии электролитов

Нернста теория электродного потенциала

Нернста химическая теория электродных потенциалов

Основы теории Нернста

Теорема Нернста Теория

Теория Аррениуса Нернста

Теория Нернста гальванического элемента

Теория внешнедиффузионной кинетики обмена ионов, основанная на уравнении Нернста — Планка

Тепловая теория Нернста



© 2024 chem21.info Реклама на сайте