Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Дебая Хюккеля теория структура

    Неточность физических представлений заключалась в том, что пренебрегали дискретной структурой зарядов, образующих заряд ионного облака, и не учитывали изменения диэлектрической проницаемости вблизи иона. Вообще же основной недостаток теории Дебая — Хюккеля заключается в том, что электролит рассматривался с молекулярной точки зрения, а растворитель — с макроскопической, в качестве некоторой непрерывной среды, в которой распределены ноны. [c.83]


    Метод Бьеррума содержит те же упрощения, что и модель Дебая— Хюккеля, в частности в отношении точных методов подсчета энергии пар ионов на малых расстояниях, когда, несомненно, большую роль играет молекулярная структура.. Тем не менее эта теория представляет значительный шаг вперед и дает удобную основу для оценки взаимодействий между ионами. Фуосс [51] рассмотрел вопрос о произвольном выбо ре критического расстояния г в и показал, что любое расстояние, на котором сила взаимодействия ионов составляет величину около 2кТ, дает аналогичные результаты. Фуосс совместно с Краусом применили описанную выше теорию к случаю диссоциации сильных электролитов в среде с меняющейся диэлектрической проницаемостью [52]. Было получено весьма хорошее совпадение теоретических расчетов и экспериментальных определений электропроводности. [c.453]

    До сих пор мы не учитывали структуру растворителя, рассматривая его как непрерывную среду с однородной диэлектрической проницаемостью. Не вызывает особых сомнений, что макроскопическое значение В приемлемо при интерпретации большей части кинетических эффектов, которые мы обсуждали выше, так же как оно пригодно при рассмотрении статических эффектов в теории Дебая-Хюккеля. В противном случае было бы трудно объяснить предельные закономерности, которым подчиняется изменение коэффициентов активности в зависимости от 1//, а также зависимость коэффициентов диффузии, теплоты растворения, парциальных мольных объемов ионов от ионной силы. Однако эти зависимости ничего не говорят нам об абсолютных свойствах ионов при бесконечном разбавлении. Чтобы подойти к решению таких задач, нам придется рассматривать некоторые детали взаимодействия ионов с молекулами растворителя, находящ,имися с ним в непосредственном контакте. В качестве введения к этой обширной и трудной области рассмотрим с электростатической точки зрения состояние иона гексагидрата кальция в водном растворе. [c.182]

    По уравнению (1.55) с сохранением только первых двух членов и при расчете активности а по теории Дебая-Хюккеля (см. ниже) были рассчитаны эффекты 25 >электролитов состав 1 1 на коэффициент активности перхлората тетра-к-бутиламмония[318]. Полученные значения Ь, отражающие ближние взаимодействия частиц в агрегатах, обсуждались исходя из представлений о влиянии обеих солей на структуру воды. Для неорганических солей была обнаружена грубая корреляция Ь с коэффициентами вязкости В, которые характеризуют влияние растворенных веществ на структуру воды (структурирующее или деструктурирующее действие) (см. гл. 2, разд. 3 Б и З.Д). При этом были использованы примерно те же соображения, что и при обсуждении коэффициентов активности в растворах индивидуальных солей (см. стр. 59-60) [132]. Другая точка зрения по этому вопросу приводится ниже. [c.65]


    Ограниченность применения предельного закона Онзагера можно отчасти объяснить чрезвычайной схематичностью модели, на которой базируется теория Дебая—Хюккеля, и отчасти упрощающими предположениями, использованными при выводе закона. Теорию Дебая—Хюккеля можно рассматривать как кинетико-статистическую теорию растворов электролитов лишь условно, поскольку в ней не учтена молекулярная структура растворителя он представляется. континуумом, характеризуемым макроскопическими диэлектрической проницаемостью и вязкостью. Кинетико-статистический метод применен для описания распределения ионов, обусловленного взаимодействием их электростатической и тепловой энергии, но даже это описание содержит противоречия. Очевидно, использование при вычислениях параметров, характеризующих условия, существующие в непосредственной близости к ионам, макроскопической диэлектрической проницаемости оправдано только в nepBOiM, и довольно грубом, приближении. Несомненно, микровязкость вблизи ионов вследствие их электрического поля отличается от вязкости, измеренной макроскопически . Кроме схематически теоретического характера, к недостаткам теории следует отнести иопользование упрощающих предположений, но без них рас- [c.357]

    Несмотря на то что ни одна из выдвинутых теорий не привела к объяснению общей картины строения жидкостей, и в частности воды, все же из теории строения жидкости можно получить некоторую информацию о механизме процессов переноса. Поэтому прежде, чем приступить к рассмотрению процессов переноса, необходимо, по-видимому, сделать общий обзор моделей структуры жидкости, хотя современный уровень знаний в этой области и не позволяет построить единую непротиворечивую теорию такой структуры. Эта информация будет весьма полезна, несмотря на то что некоторые свойства растворов электролитов (например, коэффициент активности растворенного электролита или электропроводность) можно достаточно точно описать в рамках таких теорий (например, теории Дебая — Хюккеля), в которых учитывают только взаимодействие растворенных частиц, а растворитель считают сплошной средой, не имеющей структуры. [c.16]

    КОСТИ, температурой и расстоянием максимального сближения ионов. Хотя это расстояние формально можно считать диаметром ионов, оно не идентично значениям, вычисленным из параметров структуры решетки соответствующих ионных кристаллов, измеренных при помощи дифракции рентгеновских лучей, т. е. не идентично сумме кристаллографических радиусов катионов и анионов. Методов для прямого определения ионного диаметра а, входящего в уравнение теории Дебая—Хюккеля, пока нет, так что вычислить средний коэффициент активности из независимо определенных данных нельзя. [c.482]

    Точно так же и теория Микулина, оперирующая с произвольно выбранными гидратными числами и предполагающая к тому же существование в растворах значительных количеств катионов, и анионов, не взаимодействующих с молекулами воды, не дает какой-либо полезной информации о состоянии веществ, растворенных в воде, и о структуре растворов. Теория Микулина страдает тем же недостатком, что и теория Робинсона ц Стокса, а именно все некулоновские эффекты теория относит только за счет гидратации и изменения гидратации с увеличением т. Однако в литературе хорошо известно, что при уточнении классической модели Дебая-Хюккеля необходимо учитывать следующие эффекты собственный объем ионов изменение диэлектрической проницаемости вблизи иона вследствие явлений диэлектрического насыщения растворителя изменение микроскопической диэлектрической проницаемости в объеме раствора в зависимости от. концентрации изменение количества свободного растворителя изменение энергии сольватации ионов с концентрацией учет кратных и других столкновений изменение структуры растворов с концентрацией учет неполной диссоциации учет специфического взаимодействия ионов. Все эти явления существуют в действительности и без. их учета не может быть построена количественная модель бинарных и тем более многокомпонентных растворов электролитов. Поэтому все попытки отождествить некулоновские эффекты только с-гидратацией, причем с гидратацией в ее классической интерпретации, не могут объяснить (хотя в некоторых случаях и способны описать) те сложные физические и химические явления, которые имеют место в растворах. [c.24]

    Зависимость термодинамических параметров от концентрации исследовали в химии растворов электролитов во многих аспектах. Теория Дебая — Хюккеля описывает поведение сильно разбавленных растворов, но при промежуточных или высоких концентрациях, представляющих наибольший практический интерес, предсказание или объяснение термодинамических параметров является крайне сложной задачей. Наряду с относительной неспособностью теории Дебая — Хюккеля правильно учесть дальнодействующие силы при таких высоких концентрациях, в этих условиях становятся все более важными такие взаимодействия, как взаимное высаливание и всаливание и взаимодействие между ионом и растворителем. Из перечисленных взаимодействий особенно трудно учесть те, которые связаны с изменениями в структуре воды. [c.82]


    Упрощенная модель, которая лежит в основе даже наиболее поздних работ и которая была использована в ранних работах Дебаем, Хюккелем, Онзагером и Фалькенгагеном при разработке теории электролитических растворов, может быть описана следующим образом. Совокупность ионов рассматривается как газ в непрерывной среде. Свободный от ионов растворитель характеризуется диэлектрической проницаемостью и вязкостью т]. Взаимодействие между ионами и молекулами воды принимается во внимание лишь постольку, поскольку гидратные оболочки, которые образуются вокруг сильно заряженных ионов, считаются жестко с ними связанными. Тот факт, что растворитель также обладает определенной молекулярной структурой, природа которой зависит от ионной концентрации [3, 4], не учитывается. Для характеристики этих гидратированных ионов вводится постоянный параметр а, так называемый ионный диаметр. Такие ионы-шары несут в своих центрах электрические заряды и не могут поляризоваться. На близком расстоянии между ними появляются силы взаимного отталкивания без этого нельзя представить себе стабильного существования электролитического раствора. Недавно было сделано несколько попыток учесть этот истинный ионный объем при теоретическом рассмотрении, в связи с чем появилась возможность расширить область применимости теории в сторону более высоких концентраций. [c.13]

    Первый член правой части уравнения (3.67) характеризует, согласно теории Дебая — Хюккеля, электростатическое взаимодействие между ионами, а второй и третий, как предполагает Соловкин, — учитывает влияние на коэффициенты активности гидратации ионов и соответствующих изменений структуры воды. Значения параметров а, В и О определяются [c.89]

    Заметная доля взаимодействия иона с растворителем приходится на взаимодействие заряда с окружающим его диэлектриком. Размеры почти всех ионов так малы, что напряженность электрического поля в их ближайшем окружении превышает 10 В м При таких напряженностях взаимодействие с растворителем как диэлектриком может быть столь велико (ДС < -400 кДж г-иончто структура самого диэлектрика нарушается и его статическая диэлектрическая проницаемость меняется. Очевидно, для точного расчета энергии сольватации ионов и других величин такого типа необходимо знать величину локальной диэлектрической проницаемости. Взаимодействия между ионами также зависят от диэлектрической проницаемости разделяющей их среды, поэтому именно эта величина служит основной характеристикой, рассматриваемой в теориях Дебая— Хюккеля, Онзагера и Бьеррума. Следовательно, при описании поведения ионной системы очень важно уделить должное внимание рассмотрению диэлектрической среды, которая является обязательной составной частью ионной системы. [c.306]

    Г. Френк останавливается на первой альтернативе, пытаясь обосновать допущение, что в зоне от с = О до с 0,001 соблюдаются формальные соотношения Дебая — Хюккеля, а далее ионное облако переходит в псевдорешеточную форму, что приводит к закону кубического корня. Различия в значениях коэффициента Ъ в уравнении (1) прхшисываются им специфическим взаимодействиям ионов со структурой воды с перекрытием гидратационных ко-сфер ионов в духе модели, предложенной Герни [35]. Удовлетворяясь тем, что таким путем удается получить неабсурдные значения Ъ и качественно оправдать наблюденные отрицательные отклонения кривых lg = = ср (с), противоречащие уравнению (2), автор заключает, что возможны и иные объяснения, но предлагаемый вариант не хуже, чем другие теории, дающие иногда четкие предсказания, но противоречащие опыту в простейших случаях. [c.15]

    НИИ о молекулах как о жестких диполях. Объяснил аномально высокую электрочувствптельность некоторых молекул под действием электрического поля наличием постоянного электрического момента. Исследовал (с 1912) дипольные моменты молекул в растворах полярных и неполярных растворителей создал теорию дипольных моментов. Именем Дебая названа единица измерения дипольных моментов. Предложил (1916) метод наблюдения дифракции рентгеновских лучей в кристаллических порошках и жидкостях, нашедший практическое применение в исследовании структуры молекул. Совместно с А. И. В. Зоммерфельдом установил (1916), что для характеристики движения электрона в атоме при действии магнитного поля требуется третье ( внутреннее ) квантовое число. Совместно с Э. А. А. Й. Хюккелем разработал (1923) теорию сильных электролитов (теория Дебая — Хюккеля), Открыл (1932) дифракцию света на ультразвуке и применил ее к измерению длины акустических волн. Занимался исследованием структуры полимеров. [c.165]

    Для диэлектрической проницаемости е теория Дебая — Хюккеля принимает значение макроскопической диэлектрической проницаемости растворителя, которая, однако, приемлема только в первом приближении и для очень разбавленных растворов. Так как жидкость, присутствующая между ионами, решающим образом определяет их электростатическое взаимодействие, и так как структура и состояние жидкости, очевидно, изменяются под влиянием ионов, в действительности применение диэлектрической проницаемости, измеренной макроскопически, которая представляет собой среднее из разных локальных значений, необоснованно. Однако пока еще не ясно, какое значение диэлектрической проницаемости следует использовать. В этом отношении окончательного результата пока нет важное значение имеют исследования Глюкауфа [3], который вычислил изменение ди-электричвокой проницаемости в окрестности ионов на основе [c.469]

    Более надежные результаты можно получить, сравнивая коэффициенты активности соответствуюпцнх солей. Коэффициенты активности, полученные для концентрированных растворов, обычно несколько выше коэффициентов, вычисленных на основании теории Дебая — Хюккеля. Это связано в первую очередь с уменьшением концентрации свободной воды, обусловленным ростом доли молекул воды, образующих первичные гидратные оболочки ионов [116, 117]. Поэтому коэффициенты активности солей галогенов должны возрастать при замене 1 па Г", т, е. с увеличением степени гидратации анионов таков обычный порядок. Однако комплексообразование должно приводить к снижению коэффициентов активности солей независимо от того, обусловлено оно химическим взаимодействием, образованием электростатических ионных пар или имеющим совершенно другую природу образованием нонных пар под влиянием структуры воды. При этом чем сильнее комплексообразование, тем больше обусловленное им снижение коэффициентов активности. Образование электростатических ионных пар наиболее характерно [c.225]

    При сравнении поведения соли (m-Bu)4NI со всеми остальными солями, рассмотренными на рис. 7—9, становится ясным, что они ведут себя одинаково. Более низкие значения у и и более высокие значения S по сравнению с величинами, предсказываемыми теорией Дебая — Хюккеля, нельзя больще считать аномальными. Эти факты указывают лищь на то, что взаимное всаливание превосходит другие причины неидеальности. Вызванное структурой спаривание ионов является предельным случаем взаимного всаливания [224] и может наблюдаться в случае подобных солей, однако не обязательно предполагать ассоциацию для объяснения отклонения от теории Дебая — Хюккеля. [c.91]


Смотреть страницы где упоминается термин Дебая Хюккеля теория структура: [c.81]    [c.145]    [c.48]    [c.48]    [c.324]    [c.88]    [c.29]    [c.144]    [c.144]   
Физическая химия поверхностей (1979) -- [ c.169 ]




ПОИСК





Смотрите так же термины и статьи:

Дебай

Дебая Хюккеля

Дебая теория

Хюккель

Хюккеля теория



© 2025 chem21.info Реклама на сайте