Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Диэлектрическая проницаемость применение

    Такая модель говорит о том, что при наличии сил притяжения между ионом и диполем (0 > 90°) увеличение диэлектрической проницаемости будет замедлять реакцию, а уменьшение диэлектрической постоянной — ускорять ее. Реальная трудность, возникающая при применении этой модели к реак- [c.458]

    Сложность точных математических решений затрудняет применение электростатической теории к более концентрированным растворам, но она развивается в этом направлении. Основным недостатком электростатической теории является то, что почти не учитывается взаимодействие ионов с молекулами растворителя. Использование диэлектрической проницаемости как макроскопической характеристики раствора не позволяет учесть электрическое взаимодействие ионов с дипольными молекулами растворителя на малых расстояниях. Этот недостаток также ограничивает применимость теории Дебая — Гюккеля областью разбавленных растворов, в которых взаимодействие каждого иона с молекулами растворителя проявлено полностью и остается практически неизменным при дальнейшем уменьшении концентрации (разбавлении). [c.416]


    Другой метод электрообезвоживания масел основан на использовании неоднородного электрического поля, в котором капли воды перемещаются в нанравлении градиента напряженности поля [65]. Перемещение капель происходит вследствие неодинаковой диэлектрической проницаемости воды и масла и, следовательно, разной их поляризуемости. Силы, действующие на капли водьг можно определить по формуле (7.26). Этот метод, не нашедший еще широкого применения, способен обеспечить гораздо более глубокое обезвоживание нефтепродуктов, чем методы, основанные на слиянии поляризованных капель, когда при достижении достаточно низких концентраций воды в масле (менее 0,1%) расстояния между каплями становятся столь значительными, что их укрупнение затрудняется, [c.176]

    Тенденция к увеличению применения физических методов измерения привела к дальнейшей разработке техники измерения диэлектрической проницаемости. Измерение диэлектрической проницаемости (ДП) имеет особое преимущество при ректификации смесей, содержащих воду (ДП-80), а также смесей веществ с резко отличающимися значениями этого параметра. В качестве примера можно назвать смеси уксусная кислота (ДП-6,13) — уксусный ангидрид (ДП-22,2) и метанол—толуол. Азеотропная смесь метанол—толуол, образующаяся при ректификации, имеет ДП-2Б,Н, которая в значительной мере отличается от значений диэлектрической проницаемости исходных компонентов, равных соответственно 33,8 и 2,37 [65]. При определении концентрации толуола в бензоле данный метод измерения также оказывается наилучшим, хотя разница в значениях диэлектрической проницаемости у компонентов смеси равна всего 0,08. [c.461]

    Применение неводных растворителей ограничено сопротивлением используемого стеклянного электрода (возможно использование растворителей, диэлектрическая проницаемость которых >6). [c.135]

    Влагомеры предназначены для измерения содержания воды в товарной или сырой нефти. Содержание воды обычно выражается в объемных или массовых процентах от общего объема или массы нефти (жидкости). Среди различных методов измерения содержания воды наибольшее практическое применение получил диэлькометрический метод [9]. Метод основан на зависимости диэлектрической проницаемости (ДП) нефти от содержания воды в ней. Эту зависимость приближенно можно выразить эмпирическими форму- [c.59]

    Значение диэлектрической проницаемости и возможные области применения этой величины [c.398]


    Широкое применение находят методы Дебая, основанные на из-мерении статической диэлектрической проницаемости веществ в газообразном состоянии и в разбавленных растворах полярных веществ в неполярных растворителях. [c.327]

    Другой тип энергетических потерь в диэлектриках связан с электронной Рэл и атомной Рат поляризациями, обусловленными смещениями (ток смещения) под действием электрического поля электронов, ядер, ионов или атомных групп (резонансное поглощение). Для практического применения диэлектриков представляет интерес рассмотрение деталей перехода от установившейся полной поляризации при низких частотах к поляризации при оптических частотах, так как они непосредственно связаны с разделением поляризации при низких частотах на ее составляющие ориентационную и деформационную (атомную и электронную). Резонансные потери проявляются при частотах Ю —10 Гц (миллиметровая и инфракрасная области длин волн). Существование их у полимеров обусловлено наличием собственных колебаний атомных групп. Некоторые полосы поглощения в инфракрасной области связаны с трансляционными движениями диполей. Характер изменения потерь энергии при этом имеет сходство с соответствующими зависимостями при дипольной релаксации. Мнимая составляющая " обобщенной диэлектрической проницаемости е изменяется в окрестности резонансной частоты примерно так же, как и при дипольной релаксации (проходит область максимума), хотя потери энергии в этом случае имеют другую природу и требуют иного аналитического описания. В то же время диэлектрическая проницаемость е при дипольной релаксации и резонансном поглощении изменяется ио-разному. [c.178]

    К апротонным относятся также растворители, которые называют полярными или диполярными апротонны-м и растворителями. У этой группы растворителей более высокая диэлектрическая проницаемость (е>15) и электрический дипольный момент (7-10" Кл-м и более). К ним относятся ацетон, нитрометан, диметилформамид, пропиленкарбонат, ацетонитрил, диметилсульфоксид и др. Кислотно-основные свойства этих растворителей выражены слабо, но все они сильно поляризованы. Помимо применения в аналитической химии диполярные апротонные растворители используют для проведения различных исследований в области кинетики, катализа, электрохимии и т. д., позволяя создавать наиболее благоприятные условия протекания реакций. [c.35]

    Диспергирование с применением пьезоэлектрических осцилляторов проводят следующим образом. Пьезоэлектрическую пластинку, к которой прилагают разность потенциалов, помещают в жидкость с малой диэлектрической проницаемостью, например в трансформаторное масло, через которую ультразвуковые колебания передаются сосуду с системой, подвергающейся диспергированию. [c.251]

    Другим примером систем, в которых сольватация, по-видимо-му, оказывает существенное влияние на устойчивость, могут служить дисперсные системы с неполярной углеводородной средой, играющие важную роль при производстве и применении нефтепродуктов. Такие системы, например, растворы поверхностно-активных веществ и высокодисперсные взвеси в углеводородах подробно изучены Г. И. Фуксом и его сотр. Оказалось, что устойчивость этих систем зависит от структуры молекул углеводорода и ее соответствия структуре молекул частиц дисперсной фазы, а. также от диэлектрической проницаемости среды и от наличия следов веществ с полярными и дифильными молекулами. Впрочем, для этих систем, как показал Овербек, нельзя пренебрегать двойным электрическим слоем и электростатическими взаимодействиями.,  [c.282]

    Из прямых методов определения коэффициентов активности чаще всего применяют метод измерения электродвижущих сил цепей без переноса. Таким путем определены коэффициенты активности HG1 во многих неводных растворителях и в их смесях с водой (см. Приложение 5), коэффициенты активности многих галогенидов щелочных металлов (см. Приложение 6). Коэффициенты активности хлористого лития в амиловом спирте определены, кроме того, на основании коэффициентов распределения. Криоскопический метод широко применялся для определения коэффициентов активности солей в формамиде и в других растворителях, использовался также и эбулиоскопический метод. Затруднения в применении этих методов в неводных растворах, особенно в растворителях с низкой диэлектрической проницаемостью, связаны обычно с трудностями в экстраполяции свойств, например электродвижущих сил, к бесконечно разбавленному состоянию. Это объ- [c.62]

    Эти исследования Фуосса и Крауса показали, что ассоциация ионов происходит в средах с любыми диэлектрическими проницаемостями, в том числе и с высокими. Ранее найденная ими зависимость между Ig А асс и Ig 8, согласно которой в средах с диэлектрической проницаемостью выше 40 отсутствует ассоциация ионов, является следствием применения недостаточно точной зависимости 1 от с и в средах с высокой диэлектрической проницаемостью при малых степенях ассоциации. [c.132]


    Первый член в этом уравнении не зависит от свойства растворителя. Величина рКу увеличивается со снижением диэлектрической проницаемости растворителя в связи с увеличением члена, зависящего от диэлектрической проницаемости, и в связи с изменением констапты Кпр- Заметного увеличения соотношения в силе оснований можно достичь применением дифференцирующего растворителя, если Bj и В2 — основания различной природы. В этом случае и - олг сильно различаются между собой. Относительная [c.449]

    Применение растворителей с низкими значениями диэлектрической проницаемости неизбежно ведет к уменьшению степени диссоциации растворенных электролитов, а стало быть, и к резкому снижению величины удельной электропроводности исследуемых растворов. Это обстоятельство делает в ряде случаев малопригодным или совершенно невозможным высокочастотное тнтрование, поскольку оно основано на измерениях электропроводности .  [c.115]

    Наряду с химическими на растворимость влияют также и физические факторы. Так как растворение вещества чаще всего является эндотермическим процессом, с увеличением температуры растворимость возрастает. Поскольку для растворимости гетерополярного соединения наряду с другими факторами решающими являются диэлектрическая проницаемость и дипольный момент растворителя, то растворимость его зависит также и от природы растворителя. Диэлектрическая проницаемость органических растворителей и их смесей с водой в общем меньше, чем диэлектрическая проницаемость воды. Вследствие этого растворимость данного соединения в таких средах уменьшается. Косвенное влияние растворителя сказывается и на растворимости неэлектролитов в воде. Так как они характеризуются в общем меньшими диэлектрическими проницаемостями, чем вода, добавление электролита к водному раствору неэлектролита уменьшает его растворимость в воде высаливание). Это явление основано на том, что электролит связывает молекулы воды в своей гидратной оболочке, вследствие чего концентрация неэлектролита в свободной воде возрастает. Особое внимание следует обратить на эти явления при применении органических осадителей. [c.59]

    У-2-10. п = / 2,647= 1,63 (что согласуется с экспериментом). Из симметрии молекулы СЗг можно заключить, что ее дипольный момент равен нулю. Поэтому ориентационная поляризация, которая проявляется только при относительно низких частотах ( 10" с ), отсутствует и возникает поляризация только от искажения молекул. Этот эффект почти не зависит от частоты в видимой области, так что диэлектрическая проницаемость в видимой или инфракрасной области остается примерно такой л<е, как и при Э-Ю с . Таким образом, возможно применение соотнощения Максвелла п — е.. [c.258]

    При конструировании С-ячейки основное внимание обращается на увеличение емкости С], поскольку чувствительность пропорциональна величине этой емкости. Увеличения емкости С] можно достигнуть увеличением площади электродов, увеличением диэлектрической проницаемости материала сосуда. и уменьшением толщины стенок сосуда. В качестве материала сосуда обычно применяют стекло, диэлектрическая проницаемость которого находится в пределах 5—7. Можно значительно увеличить чувствительность измерения применением сосудов из керамики, диэлектрическая проницаемость которой доходит до 100, Однако применение керамики связано с трудностями изготовления сосудов произвольной формы. [c.146]

    Из (V.29) следует, что при измерениях непроводящих или плохо проводящих жидкостей для получения высокой чувствительности необходимо увеличивать емкость i и отношение l/ o. Практически увеличение емкости l достигается применением для стенок сосуда материала с большой диэлектрической проницаемостью и малой толщиной, а также электродов, имеющих большую площадь. Увеличение отношения i/ q достигается увеличением расстояния между стенками сосуда ячейки. Последнее удобно еще и тем, что приводит к линейной зависимости Сэ от 2, особенно для жидкостей с низкой диэлектрической проницаемостью. [c.263]

    Применение метода баллистического гальванометра для определения диэлектрической проницаемости основано на сравнении отклонения гальванометра при разряде емкости, содержащей в качестве диэлектрика исследуемое вещество, и емкости стандартной, где в качестве диэлектрика используется воздух или вещество с известной диэлектрической проницаемостью. Принципиальная схема измерительного устройства изображена на рис. 185. [c.268]

    Полистирол, благодаря сохранению малых значений диэлектрической проницаемости и тангенса угла диэлектрических потерь при воздействии высоких частот, нашел широкое применение для изготовления высокочастотных деталей (панели электронных ламп, каркасы катушек, основания конденсаторов и др.). Детали из полистирола могут изготовляться путем литья под давлением, выдавливанием (шприцеванием), а также механической обработкой пластин и блоков. В электротехнике нашли применение полистироловые лаки для пропитки и покрытия различных катушек и других деталей. Полистирол может применяться также в виде пористого материала. [c.119]

    Эта формула дает лучшую сходимость с опытом, чем формула Борна. Метод Ван-Аркеля и де-Бура отличается от борновского тем, что в нем процесс гидратации разделяется на два этапа. Энергия образования первого гидратного слоя вычисляется на основе взаимодействия между газообразным ионом и полярными молекулами воды, т. е. взаимодействия, происходящего вне сферы жидкой фазы. Такой способ расчета позволяет учесть свойства отдельных молекул воды (их дипольные моменты, поляризуемость и т. п.). Поэтому при рассмотрении процесса образования первого гидратного слоя, где эти свойства особенно важны, появляется возможность отказаться от представления о воде лишь как о среде с определенной диэлектрической пропицаемостью. Поскольку на второй стадии цикла в воду вносится ион, уже частично гидратированный, с радиусом, зиачителглю большим, чем радиус исходного иона, то одна и та же ошибка в его определении здесь будет иметь меньи ее значение. Возмуихения, вызванные введением такого гидратированного иоиа в воду, будут меньшими, и представление о воде как о непрерывной среде с определенной диэлектрической проницаемостью, а следовательно, и применение формулы (2.14) оказываются более оправданными, чем в методе Борна. Молекулу воды Ван-Аркель и де-Бур представляют себе в виде с([)еры с радиусом 0,125 нм и электрическим моментом диполя, равкым 6,17-10 ° Кл.м (1,85 0). [c.59]

    В тридцатых — сороковых годах произошел резкий скачок в технических возможностях изучения химического состава сложных смесей. Для разделения тяжелых нефтяных фракций наряду с методами перегонки и ректификации начали использовать хроматографию на адсорбентах, комплексообразование с карбамидом, термическую диффузию. Получили широкое распространение многочисленные физические методы исследования УФ- и ИК-опектроскопия, ядерно-магнитный резонанс, масс-опектрометрия, дифференциально-термический анализ, электрофизические методы (определение диэлектрической проницаемости, удельного и объемного сопротивлений, диэлектрических потерь) и др. Большое применение нашли расчетные методы определения структурно-группового состава, позволившие в первом приближении получить представление о соста1ве масляных фракций. Новые методы разделения и анализа значительно углубили наши познания о составе и структуре тяжелых компонентов нефти и позволили более обоснованно решать технологические задачи производства масел и химмотологические проблемы рационального их использования в условиях эксплуатации. [c.8]

    Диэлектрическая проницаемость полимера составляет 3,0, электрическая прочность—50 кв1мм. Поливинилкарбазол нашел применение в производстве изоляторов для телевизионных, радиолокационных и других установок. [c.391]

    Мы не будем рассматривать здесь различные типы измери тельных ячеек и приборов, выпускаемых промышленностью, и технику работы на них — для этого существуют специальные руководства. Типы кривых осциллометрического титрования в основном сходны с кондуктометрическими. Но в осциллометрии ветви кривых линейны только в том случае, если измерения проводят в области перегиба характеристических кривых и не происходит слишком сильных изменений электропроводности. В противном случае на кривых в большей или меньшей степени возникают плавные изгибы. При проведении измерений в выбранной оптимальной рабочей области получают такую же, а иногда даже большую точность измерений, чем в кондуктометрии. Поэтому области применения осциллометрии и кондуктометрии совпадают, иногда осциллометрия даже более предпочтительна. Это происходит в тех случаях, когда важны такие преимущества осциллометрии, как возможность безэлектродных измерений и увеличение чувствительности с уменьшением диэлектрической проницаемости. Осциллометрик используют для индикации кислотно-основного, осадительного и комплексометрического титрования различных типов, а также при титровании агрессивных растворов и в неводных средах. Она пригодна и для решения различных кинетических проблем при исследовании процессов кристаллизации, растворения (на- пример, гидраргиллита в алюминатном щелоке), омыления, этерификации, полимеризации, самоокисления и т. д. Метод ос-Циллометрии находит применение в фазовом анализе, например при изучении процесса плавления, затвердевания, фазового обмена, расслоения, для построения диаграмм состояния и т.д. Особенно важным является использование осциллометрии для Контроля и регулирования процессов производства. Этот метод пригоден для неразрушающего анализа ряда продуктов или содержимого ампул. [c.336]

    При титровании в уксусной кислоте (вследствие ее низкой диэлектрической проницаемости) возникают большие солевые ошибки, даже при небольшой концентрации солей они достигают нескольких единиц рЛГ. Поэтому значительный интерес представляет применение кислых растворителей с высокой диэлектрической проницаемостью. В работе совместно со Шкодиным и Дзюбой мы показали большие преимущества муравьиной кис лоты (8 = 57) как среды для титрования по сравнению с уксусной кислотой. В этой среде значительно лучше, чем в уксусной кислоте, титруются амфотерные основания, константы основности которых в воде имеют порядок Ю —10 1 (например, кофеина, теобромина, мочевийы). [c.452]

    Значительное улучшение условий титрования солей карбоновых кислот по вытеснению сильной кислотой и раздельное титрование смеси минеральных и карбоновых кислот достигается применением в качестве растворителей гликолей и их смесей с растворителями с ннзкой диэлектрической проницаемостью. В связи с хорошими растворяющими способностями этих смесей в них удобно производить анализ мыл. [c.459]

    Многие свойства воды, такие, как значите, ьнын ди-польный момент, амфотерный характер, большая диэлектрическая проницаемость и, наконец, ее доступность. и легкость очистки ставят ее в особое положение как растворитель. Однако в некоторых случаях неводные среды могут быть применены с большим успехом. Началом исследований в этой области является применение теории Дебая — Хюккеля к неводным растворителям, используемым в качестве среды в органических реакциях. В настоящее время некоторые неводные растворители, например безводный фтористый водород, применяются в промышленном масштабе. Поэтому удивительно, что так мало известно о многих возможных иевод-ных. растворителях. [c.348]

    Чувствительность при измерениях реактивной составляющей. Чувствительность емкостной ячейки при диэлкометрическом титровании ио реактивной составляющей не зависит от рабочей частоты. Вместе с тем повышению чувствительности способствует увеличение Сг и уменьшение . Это означает, что применение тонкостенных сосудов с большим значением диэлектрической проницаемости материала сосуда более эффективно, чем с низким значением диэлектрической проницаемости. Однако чувствительность при измерениях реактивной составляющей будет несколько повышаться в случае веществ с меньшим значением диэлектрической проницаемости. [c.121]

    С этим связаны две принципиально разные возможности измерения С и соответственно диэлектрической проницаемости. Одна — определение изменения частоты (/ — / ), другая — компенсация изменения частоты применением переменноемкостного конденсатора, благодаря чему вновь достигается точка резонанса. В качестве критерия резонанса используют изменение характеристического анодного или сеточного тока однокаскадного осциллятора [108. Для определения диэлектрической проницаемости необходимо калибровать измерительную установку, применяя калибровочные растворы или прецизионные конденсаторы. [c.168]

    Калибровка с применением конденсаторов. Применяя прецизионные конденсаторы, шкалу диэлкометра можно откалибровать в единицах pF. Для этого снимают показания на шкале, получаемые при укреплении подводящих проводов на диэлкометре. Эту величину следует учитывать при проведении последующих измерений (емкость Сд). Затем определяют собственную емкость применяемой измерительной ячейки (Со). Значения Со и Сд определяют для двух эталонных жидкостей с известным значением диэлектрической проницаемости. После этого рассчитывают значение диэлектрической проницаемости для неизвестного вещества [c.168]

    Первым аналитическим применением измерений диэлектрической проницаемости было определение содержания влаги (Берлинер, Рютер, 1929) в органических соединениях. Позднее были разработаны методы определения чистоты органических соединений, методы анализа бинарных органических систем и, наконец, в 1950— 1960 гг. впервые были опубликованы методы диэлектрометрическо-го титрования органических систем. [c.246]

    Подобный путь расчета диэлектрической проницаемости жидкостей можно использовать и в случае применения С-генератора с многозвенной С-ячейкой, изображенных на рис. 98, а и г, В этом случае метод измерения и расчета упрощается, та1К как частота генератора [ с достаточно большим приближением не зависит от активной электропроводности жидкости, определяется исключительно величиной диэлектрической проницаемости и выражается кривой е[ на рис. 183. Кроме того, не требуется измерения резонансного напряжения Ер,.г, на клеммах ЯС колебательного контура. [c.279]


Смотреть страницы где упоминается термин Диэлектрическая проницаемость применение: [c.756]    [c.87]    [c.461]    [c.494]    [c.122]    [c.391]    [c.324]    [c.462]    [c.314]    [c.406]    [c.202]    [c.340]    [c.495]    [c.378]    [c.121]   
Неформальная кинетика (1985) -- [ c.163 , c.164 , c.176 , c.180 ]




ПОИСК





Смотрите так же термины и статьи:

Диэлектрическая проницаемость



© 2025 chem21.info Реклама на сайте