Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Бериллий галогенид

    Получение металлического бериллия. Из многочисленных методов, предложенных для получения металлического бериллия, серьезную экспериментальную проверку прошли очень немногие, а именно — металлотермическое восстановление соединений бериллия и электролитическое восстановление расплавленных галогенидов бериллия. [c.208]

    Общие сведения. Цинк, кадмий, ртуть являются последними представителями -переходных элементов в периодах. Это обстоятельство, а также специфика полностью завершенной ( °) орбитали накладывают на химию этих элементов определенные особенности. С одной стороны, они еще похожи на своих предшественников по периоду, с другой — в большей мере, чем другие -элементы, похожи на элементы главной группы (НА). Например, сульфат цинка очень похож на сульфат магния, а его карбонат — на карбонат бериллия. Общими для всех элементов главной и побочной подгрупп второй группы являются близость оптических спектров и сравнительно низкие температуры плавления металлов. С медью, серебром и золотом элементы подгруппы цинка роднит следующее. Как и элементы подгруппы меди, они дают комплексы с МНз, галогенид- и цианид-ионами (особенно 2п и С(1). Из-за сильного эффекта взаимной поляризации их оксиды окрашены, достаточно непрочны. Электрохимические свойства в ряду 2п—Сё—Нд изменяются аналогично их изменению в ряду Си—Ад—Аи. Они легко дают сплавы. [c.555]


    БЕРИЛЛИЯ ГАЛОГЕНИДЫ —БЕРТЛО—ТОМСЕНА ПРИНЦИП [c.213]

    Важнейшим способом получения металлов ПА-подгруппы, имеющих малые алгебраические величины стандартных электродных потенциалов, является электролиз их расплавленных хлоридов (или других галогенидов) иногда для понижения температур плавления к ним добавляют хлориды щелочных металлов. Например, бериллий получают электролизом расплавленной смеси фторида бериллия и фторида натрия, кальций и стронций — электролизом смесей хлоридов и фторидов этих металлов. Магний помимо электролиза расплавленной смеси хлоридов магния и калия получают другими способами восстановлением доломита СаСОз-М СОз ферросилицием или кремнием, восстановлением оксида магния углем в электрических печах. Барий принято получать металлотермическим (алюминотермическим) способом. [c.294]

    Галогениды и другие соли. Образование галогенидов характе[Тно для всех элементов главной подгруппы второй группы. Они, как правило, хорошо растворимы в воде, кроме фторидов (но не ВеР а). Галогениды бериллия в водном растворе гидролизуются. [c.265]

    Для получения катализаторов ионно-координационной полимеризации используют такие переходные металлы, как титан, ванадий, хром, марганец, железо, кобальт, никель, цирконий, ниобий, молибден, палладий, индий, олово, вольфрам. Для образования комплексов в основном с галогенидами этих металлов используют алкилпроизводные алюминия, цинка, магния, лития, бериллия. На этих катализаторах удалось осуществить промышленный синтез полипропилена, тогда как другие каталитические системы оказались неэффективными. Такие катализаторы широко используются для получения других полимеров (например, полиэтилена) строго стереорегулярной структуры, особенно цис-1,4-полибутадиена и цис-1,4-полиизопрена — синтетических каучуков высокого качества, полноценно заменяющих натуральный каучук, [c.48]

    БЕРИЛЛИЯ ГАЛОГЕНИДЫ-БЕРТЛО—ТОМСЕНА ПРИНЦИП [c.213]

    Гибридизация одной 5- и одной р-орбит ал и (зр- гибридизация) происходит при образовании галогенидов бериллия, а также цинка, кадмия и ртути. Атомы этих элементов в нормальном состоянии имеют на внешнем слое два спаренных -электрона. В результате возбуждения один из -электронов переходит в р-состояние — появляется два иеспаренных электрона, один из которых -электрон, а другой р-электрон. При возникновении химической связи эти две различные орбитали преобразуются в две одинаковые гибридные орбитали ( р-орбитали), направленные под углом 180 друг к другу,— две связи име- [c.167]


    Галогениды. Безводный хлорид бериллия ВеСЬ обладает свойствами, характерными скорее для галогеноангидридов, чем для обычных солей. Это объясняется в значительной мере ковалентной связью Ве—С1, причем отклонения от ковалентности, естественно, связаны с очень сильным поляризующим действием маленького иона Ве2+. В отличие от обычных солей с преобладающей ионной связью катион— анион, имеющих высокую т. пл., ВеСЬ плавится уже при 400° С (повышенное давление), а в обычных условиях возгоняется при 300° С, что характерно для молекулярных соединений. [c.35]

    В ковалентных соединениях, например в хлориде, бериллий образует линейную систему связей хлорид бериллия не имеет момента диполя, что указывает на конфигурацию С1—Ве—С1. Ковалентный тип связи согласуется со способностью галогенидов бериллия к возгонке. Связи Ве—С1 можно рассматривать как результат перекрывания гибридной 5р-орбитали Ве с Зр-орбиталью С1. Более типично для бериллия образование тетраэдрической конфигурации орбиталей, в которой фактически существующие связи удобно описать как гибридные зр -орбитали Ве, перекрывающиеся с орбиталями присоединяемых к нему атомов. Линейные структуры [c.154]

    Следует заметить, что галогениды бериллия образуют кристаллические структуры, но фторид бериллия аморфен. Все галогениды гидролизуются в кислой среде при выпаривании раствора гидроксида бериллия во фтороводородной кислоте можно получить гидрат фторида бериллия ВеРг-НгО, образующий бесцветные кристаллы. Безводный хлорид бериллия представляет собой игольчатые кристаллы, содержащие цепные полимерные структуры. Галиды бериллия проявляют склонность к комплексообразованию с аммиаком, аминами, эфирами и т. п. Температуры плавления галидов бериллия лежат в пределах 440—510°С, исключение составляет фторид, плавящийся при 803°С, у которого ионные свойства выражены более отчетливо, чем у остальных. Эта же закономерность проявляется и у галидов других металлов. [c.294]

    Применение некоторых катализаторов значительно ускоряет процесс сернокислотной гидратации. Для этой цели используются соли железа, кобальта, никеля, меди, платины, серебра [41, 42], а также соединения висмута [43, 44]. Сульфат серебра [45, 46] и соли меди [47—49] сильно ускоряют гидролиз сложных эфиров серной кпслоты. Рекомендуется применять в качестве катализаторов галогениды бора пли бораты в соединении с сульфатами никеля и других тяжелых металлов [50]. Необходимые для этого реакционные условия определены Поповым [51]. При высоком давлении и высокой температуре каталитическое действие проявляют сульфаты органических оснований, например изопроииламина, анилина, наф-ти.талшна, хинолнна [52], а также сульфаты и галогениды цинка, магния, бериллия [53] и алюминия [54]. Соли алюминия обладают каталитическим действием при высоком давлении и низких температурах в водном растворе. Наконец, следует упомянуть еще кремневую или борвольфрамовую кислоту и их соли [55], однако процессы с их участием протекают прн 200—300 °С под давлением уже, в газообразной фа.зе. [c.60]

    Ни фторид, ни оксифторид бериллия не растворяются в абсолютном спирте и в его смеси с эфиром. ВеРз не растворяется в плавиковой кислоте. При растворении в серной кислоте идет обменная реакция — образуются плавиковая кислота и сульфат бериллия. При растворении в жидком аммиаке (—78,5°С) образуется соединение ВеРа-NHs, разлагающееся при повышении температуры. Это соединение — единственный, к тому же нестабильный аммиакат, так как (выше на это указывалось) фториды в отличие от других галогенидов не склонны давать комплексы с нейтральными лигандами. [c.180]

    Бромид и иодид бериллия. И тот и другой получают непосредственным взаимодействием бериллия с галогеном около 500°. Поскольку гидролизуемость галогенидов бериллия увеличивается от фторида к иоднду, последний особенно подвержен гидролизу, поэтому при его получении надо исключить возможность попадания влаги. [c.184]

    Металлотермические методы. Эти методы были испробованы по отношению к окиси и галогенидам бериллия. [c.208]

    Электролитическое производство можно осуществить, используя расплавы солей, в частности расплавы галогенидов бериллия. При описании свойств галогенидов бериллия (стр. 180, 183) показано, что их расплавы не проводят тока, поэтому электролиз возможен лишь в присутствии второго компонента, обладающего достаточной электропроводностью и более высоким (по сравнению с галогенидом ложения. Соответствующий состав [c.211]

    Большинство галогенидов (кроме галогенидов типичных неметаллов) склонны к реакциям комплексообразования. Галогенсодержащие ацидокомплексы характерны не только для переходных металлов, но и для ряда s- и р-элементов. Так, фторидные комплексы очень характерны для бериллия, алюминия и кремния  [c.273]

    Наиболее изучены растворы щелочных металлов в аммиаке. Растворы других металлов и в других растворителях во многом проявляют аналогичные свойства. Щелочноземельные металлы (Mg—Ва) легко образуют растворы в аммиаке, но при испарении растворителя остается твердый аммиакат М-дгМНз. Лантаноиды с устойчивой степенью окисления (+П), например европий и иттербий, также растворяются в аммиаке. При катодном восстановлении растворы иодида алюминия, хлорида бериллия, галогенидов тетраалкиламмо-ния окрашиваются в синий цвет, они содержат, по-видимому, А1 + и Зе , Ве + и 2е , R4N+ и е соответственно. [c.226]


    При растворении гидроокиси бериллия Ве(0И)2-ИН2О в растворах минеральных солей бериллия (галогенидов, сульфатов, селе-натов и т. д.) или в растворах органических солей бериллия образуются основные сопи. [c.156]

    Доля ковалентной связи в соединениях элементов подгруппы ПА значительно больше, чем в соединениях щелочных металлов. Наиболее значительна она в галогенидах бериллия, которые по свойствам являются промежуточными мел<ду соединениями металлов и неметаллов. Галогениды бериллия (за исключением наиболее ионного ВеРг) испаряются при 400—500 °С ив расплавленном состоянии мало ионизированы (электропроводность жидкого ВеСЬ в 1000 раз меньше, чем жидкого Na l). [c.312]

    Бериллий и его аналоги при нагревании с галогенами образуют галогениды ЭГ2. Их получают также, действуя НГ на металл или Э(ОН)г. ЭГ2 — кристаллические вещества (ВеРг существует также в виде стекловидной массы), большинство их очень хорошо растворяется в воде (практически нерастворимы фториды Mg, Са, Sr, Ва) o6pa3vroT кристаллогидраты. Чистые безводные галогениды Mg и Са нельзя получить нагреванием на воздухе гидратированных солей, так как при этом происходит гидролиз соли и получается продукт, содержащий примесь оксогалогенида, наиример М гОСЬ. Обычно безводные ЭГз получают, нагревая кристаллогидраты этих солей в токе галогенводорода. Еще более подвержены гидролизу галогениды бериллия. Безводные галогениды Ве получают, действуя Гг или НГ па металл при высокой температуре. [c.316]

    Гибридизация сопровождается образованием структур с высокосимметричным направленным распределением электронной плотности (рис. 5.5). Она отражает такое важное свойство ковалентной связи, как ее направленность. От направленности ковалентной связи зависит строение молекул. Комбинации в атоме двух электронов в - и р-состояниях приводят к образованию двух гибридных связей 2q) под углом 180° (галогениды бериллия, цинка, кадмия, ртути) например, для молекулы 2пС12  [c.101]

    Гибридизация одной у- и одной р-о р -бита л и ( р-г и б р и д и 3 а ц и я). Такой тип гибридизации реализуется при образовании галогенидов бериллия, цинка, кадмия и ртути. Атомы этих элементов в основном состоянии имеют во внешнем слое два спаренных -электрона. При возбуждении один -электрон переходит в р сосгояние, таким образом, получаются два неспаренных электрона (s-и р-электроны). При образовании химической связи эти две различные орбитали преобразуются в две одинаковые гибридные орбитали (5р-орбиталн), направленные под углом 180 друг к другу, т. е. две связи имеют противоположные направления (см. рис. 1,35), Экспериментальное определение структуры молекул. ВеГ], 2пГ , СдГ2, HgГJ (Г-галоген) показало, что эти молекулы являются линейными и обе связи металла с атомами галогена имеют одинаковую длину. [c.93]

    Дола ковалентной связи в соединениях элементов подгруппы I1A значительно больше, чем- в соединениях щелочных металлов. Наи лее значительна она а галогенидах бериллия, которые по свойствам являются промежуточными между соединениями металлов и неметаллов. Т. кип. галогенидов бериллия (за исключением наиболее ионного BeFj) лежит в пределах 400-500 С, в расплавленном состоянии они мало ионизированы (электропроводность жидкого Be Ii а я 1000 раз меньше, чем жидкого Na I). [c.330]

    Бериллий и его аналоги при нагревании с галогенами образуют галогениды ЭГг. Их получают также по реакции галогеноводородов НГ с металлами или Э(0Н)2. Галогениды ЭГа - кристаллические вещества (ВеРг существует также в виде стекловидной массы), большинство из них очень хорошо растворяется в воде (практически нерастворимы фториды Mg, Са, Sr, Ва) образуют кристаллогидраты. Чистые безводные галогениды MgFa и С аГ2 нельзя получить нагреванием на воздухе кристаллогидратов солей, так как при этом происходит падролиз соли и получается продукт, содержащий примесь оксида-галогенида, например MgaO Ij. Обычно безводные ЭГ2 получают, нагревая кристаллогидраты этих солей в токе галогеноводорода. Еще более подвержены [c.333]

    Донорными свойствами объясняются многие известные реакции углеводородов, сопровождающиеся замещением их атомов водорода атомами металлов. Акцепторными свойствами объясняется проявление электропроводности растворов углеводородов в жидких талогенводо-родах, СИЛЬНО увеличивающейся по мере добавления в раствор галогенидов бора, алюминия, бериллия, сурьмы и других соединений, склонных образовывать комплексные ионы типа [Вр4]-, [МСЦ]-, ЗЬСЦ]—, [Вер4]- и т. д. [c.403]

    Рассмотрим примеры различных видов гибридизации 5 и р-орбиталей. Г ибридизация одной 8- и одной р-орбиталей (зр-гибридизация) происходит при образовании галогенидов бериллия, например ВеРг, цинка, ртути, молекулы ацетилена и др. Атомы этих элементов в основном состоянии имеют на внешнем слое два спаренных 5-электроиа. В результате возбуждения один из электронов -орбитали пер еходит на близкую по энергии р-орбиталь, т. е. появляются два неспаренных электрона, один из которых 5-электрон, а другой р-электрон. При возникновении химической связи эти две различные орбитали превращаются в две одинаковые гибридные орбитали (тип гибридизации — зр), направленные под углом 180° друг к другу, т. е. эти две связи имеют противоположное направление (рис. 20). [c.86]

    Химические свойства бериллия очень сильно напоминают свойства алюминия (диагональная периодичность свойств). Так, оба эти металла образуют ковалентные галогениды с мостиковыми атомами галогена, им свойственно комплексообразование, в частности с галогенид-ионами, например [Вер4] и [А1Рб] , наконец, бериллий амфотерен (как и алюминий)  [c.198]

    Галогениды 5 - и р-элементов. Галогенидами называют бинарные соединения галогенов с более электроположительными элементами. Галогениды 5- и р-элементов существенно различаются по свойствам. Галогениды металлов 1А и ПА групп (кроме галогенидов бериллия) —типичные ионные соединения. За исключением Сар2, они хорошо растворимы в воде, обладают кристаллическими решетками с высокими значениями координационных чисел (6 или 8), плавятся и кипят при высокой температуре, в растворе и расплаве проводят электрический ток. [c.408]

    Многочисленные исследования, проведенные с целью изучения теплоемкости бериллия (В. Мейер, Б. Браунер), измерения плотности пара галогенидов бериллия (Л. Нильсон, О. Петерсон, Б. Браунер), изучения спектров (Д. Чамичан, В. Гартли), подтверждали правильность взглядов И. Авдеева и Д. И. Менделеева на бериллий как на двухвалентный элемент с атомной массой 9,4. [c.271]

    Из галогенидов бериллия наиболее характерны BeFj ( п ==595°С, Д///, 298=-=—1008,3) и Весь ( .,=440 С, 298=—471,1 кДж/моль). ВеРз получают термическим разложением фторобериллата [c.126]

    Галогены взаимодействуют с бериллием лишь при нагревании, образуя галогениды ВеНа12. Исключением является фтор, реагируюш,ий с бериллием и на холоду. [c.169]

    Соединения с галогенами. Свойства фторида бериллия отличаются от свойств остальных его галогенидов. Это различие определяется разным характером связи бериллий — галоген. Связь Ве — Р по преимуществу ионная, связи Ве с другими галогенами по преимуществу ковалентные, причем степень ковалентности увеличивается от С1 к I. Этим объясняется устойчивость чисто фторидных комплек- [c.178]

    Соединения с другими неметаллами. Сульфид бериллия [10] можно получить взаимодействием серы и бериллия в атмосфере водорода, нагревая 10—20 мин при 1000—1300°. Полученный таким способом сульфид бериллия фосфоресцирует в вакууме при 1300° в присутствии следов других металлов. Следы железа вызывают синее свечение, висмута — слабое фиолетовое, сурьмы — слабое желтое. Фосфоресценция усиливается в присутствии Na l. В воде BeS растворяется плохо и с разложением, но по сравнению с AI2S3 более устойчив. Разбавленные кислоты разлагают сульфид — выделяется H2S. Все галогены, за исключением иода, при взаимодействии с сульфидом бериллия образуют галогениды  [c.185]

    Энергия сублимации ВеН. неизвестна, по по аналогии с галогенидами бериллия может быть оценена прнмерио в 170 кДж, отсюда [c.304]


Смотреть страницы где упоминается термин Бериллий галогенид: [c.213]    [c.236]    [c.211]    [c.213]    [c.236]    [c.334]    [c.334]    [c.70]    [c.154]    [c.209]    [c.316]    [c.335]    [c.337]    [c.154]    [c.514]   
Катализ в неорганической и органической химии книга вторая (1949) -- [ c.413 , c.457 ]




ПОИСК







© 2024 chem21.info Реклама на сайте