Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Молекулярных орбиталей метод применение

    Основываясь на методе, примененном к гомоядерным двухатомным молекулам, проведем в рамках теории молекулярных орбиталей исследование электронного строения двухатомных гетероядерных молекул, т.е. молекул, состоящих из неодинаковых атомов. [c.532]

    И. Метод Хюккеля. В последние годы метод молекулярных орбиталей был применен для расчета характеристик очень многих молекул. Он щироко проник даже в такие отрасли знания, где [c.201]


    Метод молекулярных орбиталей в применении к расчету структур боранов и карборанов [c.27]

    Ни одна модель химической связи не будет в равной мере успешна в объяснении свойств всех соединений переходных элементов, Даже наиболее гибкий в теории химической связи метод молекулярных орбиталей в применении к переходным элементам страдает тем, что на неэмпирическом уровне требует большого объема вычислений, а на полуэмпирическом уровне его очень трудно параметризовать. И только в последние годы расчеты на основе метода молекулярных орбиталей дали до некоторой степени удовлетворительное объяснение структуры и спектров соединений переходных металлов. В противоположность этому эмпирическая теория, известная как теория поля лигандов, оказалась очень успешной в интерпретации свойств соединений переходных металлов важного, хотя и ограниченного класса. [c.249]

    Начало развитию К. х. положили работы ряда исследователей, выполненные в период становления квантовой механики. В. Гейзенберг (1926) впервые провел расчет атома гелия В. Гайтлер и Ф. Лондон (1927) на примере молекулы водорода дали квантовомех. интерпретацию ковалентной связи. Их подход нашел дальнейшее развитие в работах Дж. Слейтера (1931) и Л. Полинга (1931) и получил назв. валентных связей метод. В этот же период Ф. Хунд (1928), Р. Малликен (1928), Дж. Леннард-Джонс (1929) и Э. Хюк-кель (1930) заложили основы широко распространенного в настоящее время молекулярных орбиталей метода. Одновременно появились и основополагающие работы Д. Харт-ри (1927) и В.А. Фока (1930), создавших самосогласованного поля метод, а также работы Дж. Слейтера (1929-30) по мат. основам конфигурационного взаимодействия метода. X. Бете (1929) и Дж. Ван Флек (1932-35) разработали кристаллического поля теорию, развитие к-рой привело к созданию поля лигандов теории, нашедшей широкое применение в координац. химии. [c.365]

    Развитию органической химии в значительной мере способствовало применение теории молекулярных орбиталей (метод ЛКАО) для интерпретации сопряженных систем. Кроме того, при применении теории поля лигандов к координационным и другим комплексным соединениям стала намного яснее большая область неорганической химии. [c.7]

    Английское издание, подобно японскому, предназначено для ознакомления химиков-органиков с основными принципами теории молекулярных орбиталей и применением ее в органической химии. Подробные объяснения, включенные в этот учебник, могут оказаться излишними для физико-химиков, хорошо владеющих методами квантовой механики. Однако они необходимы для многих исследователей, особенно химиков-органиков, которые хотят изучить основные принципы современных квантовомеханических расчетов, тем более, что число таких работ со временем, несомненно, будет все более возрастать. [c.7]


    Метод Хюккеля для ароматических и сопряженных углеводородов детально рассмотрен в гл. 2. Как было показано, результаты этой упрощенной теории молекулярных орбиталей в применении к физическим свойствам молекул оказываются неутешительными. Значения параметров аир нельзя переносить от одной произвольной молекулы к другой и нельзя получить с их помощью предсказания различных электронных свойств с какой-либо степенью точности для одних и тех же молекул. [c.91]

    Существуют два способа объяснения характера ковалентной связп— метод валентных связей (ВС) и метод молекулярных орбиталей (МО). Первый метод основан на предложенном В. Гейтлером и Ф. Лондоном (1927) решении уравнения Шрёдингера для молекулы водорода На (примененном ранее Гейзенбергом к атому гелия). В тридцатых годах этот метод усовершенствован Дж. Слейтером и Л. Полингом. Второй метод — молекулярных орбиталей — создан несколько позднее Р. Малликеном, Ф. Хундом, Э. Хюккелем, Дж. Леннардом-Джонсом и Ч. Коулсоном. В пятидесятые годы важный вклад в развитие метода сделал К. Рутан, использовав уравнения самосогласованного поля (ССП), разработанные Д. Хартри и В. Фоком для многоэлектронных атомов. Создание математического аппарата и электронно-вычислительных машин позволило проводить многочисленные теоретические расчеты для молекул, беря из опыта значения только межъядерных расстояний. Метод молекулярных орбиталей более употребителен и поэтому рассмотрен более подробно, чем метод валентных связей. [c.176]

    Осл. исследования посвящены квантовой химии. Заложил (1952) основы теории граничных орбиталей рассчитал плотности граничных п-электропов у углеродных атомов бензола и нафталина и показал, что их значения и распределение определяют реакционную способность молекул. Развил (1954—1957) представлепия о формировании переходного состояния, или активированного комплекса, как взаимодействия электронов вновь образующейся связи реакционный центр — атакующий реагент с остальной сопряженной системой. Применил (1960—1962) теорию граничных орбиталей к расчетам (т-электропной плотности алифатических углеводородов, энергии их диссоциации, колич. характеристик устойчивости алифатических ионов и радикалов. От оценки реакционной способности по индексам электронных зарядов перешел (с 1965) к расчетам энергий взаимодействия реагирующих молекул и структуры активированных комплексов методами самосогласованного поля и конфигурационного взаимодействия с выделением орбитальных вкладов в это взаимодействие. Развил (1970-е) теорию граничных молекулярных орбиталей в применении к р-циям с многоцентровыми активированными комплексами и к различным каталитическим р-циям. [c.467]

    Прежде всего воспользуемся методом валентных связей (ВС), иначе говоря, когда связь образуется парой электронов, а затем познакомимся с несколькими примерами применения метода молекулярных орбиталей (МО) в неорганической химии. [c.88]

    Теория кристаллического поля является весьма грубым приближением к действительности, так как рассматривает лиганды бес-структурно, как источники точечных отрицательных зарядов. Для более точных расчетов следует применять метод молекулярных орбиталей (МО), который в применении к комплексным соединениям называется теорией поля лигандов. В этой теории учитывается строение молекулярных орбиталей как адсорбированных атомов и молекул, так и атомов катализатора. Таким образом, становится возможным оценивать адсорбционную и каталитическую активность вещества и реакционную способность адсорбированных молекул в связи с их химическим строением. [c.459]

    Наиболее строгое рассмотрение вопроса о природе связи в комплексных соединениях достигается применением метода молекулярных орбиталей. Однако он значительно сложнее теории кристаллического поля расчет энергии связи в комплексных соединениях по методу МО требует использования мощных вычислительных машин. В теории кристаллического поля расчеты несравненно проще, и ею нередко пользуются при рассмотрении объектов, к которым она не вполне применима, поскольку так можно получить ориентировочные оценки. [c.225]

    МЕТОД МОЛЕКУЛЯРНЫХ ОРБИТАЛЕЙ В ПРИМЕНЕНИИ К 1,3-БУТАДИЕНУ. Одним из методов описания распределения л-электроппой плотности в 1,3-бутадиене является метод молекулярных орбиталей. Выделим а-фраг-мент, содержащий электронные нары и четыре р-орбитали. Взаимодействие этих р-орбиталей (что можно представить комбинацией волновых уравнений) приводит к новым молекулярным орбиталяд (МО) интересующей нас сопряженной системы. Каждая из этих молекулярных орбиталей охватывает все четыре атома углерода. [c.498]


    Метод молекулярных орбиталей нашел широкое применение, так как дает самый общий подход ко всем типам химических соединений. В последнее время эта теория доминирует в теории химической связи и теоретической химии вообще. Ее математический аппарат наиболее удобен для проведения количественных расчетов с помощью ЭВМ. [c.61]

    Наиболее широко используют метод валентных связей (ВС), метод молекулярных орбиталей (МО) и теорию кристаллического поля, которая нашла наибольшее применение для описания комплексных соединений (см. гл. X). [c.35]

    Область применения метода молекулярных орбиталей очень широка. Этот метод дает самый общий подход ко всем химическим соединениям. Метод незаменим для описания систем с нелокализованными связями, для объяснения свойств разнообразных комплексов (см. стр. 122). В настоящее время теория молекулярных орбиталей является доминирующей в теории химической связи и в теоретической химии вообще. Ее математический аппарат наиболее удобен для проведения количественных расчетов на компьютерах. [c.102]

    Метод молекулярных орбиталей также предсказывает тетраэдрическую структуру метана, как отвечающую наименьшему отталкиванию ядер атомов молекулы (см. разд. 4.5.6). Однако только последовательное применение [c.552]

    Проиллюстрируем применение метода Рутаана на примере молекулы Нг. Для построения молекулярных орбиталей будем пользоваться минимальным базисом из 15-АО атомов водорода  [c.127]

    Нельзя сказать, чтобы исследования химических свойств этих соединений и теоретический анализ природы связи дали четкий ответ на вопрос, как же распределены электроны, например, во фторидах ксенона. Трудности применения методов молекулярных орбиталей и валентных связей обусловлены большим числом электронов в атомах ксенона и трудностью даже приближенного вычисления волновых функций. Все же большинство авторов, занимавшихся этой проблемой, считают, что низкие потенциалы ионизации инертных газов облегчают перенос заряда от атома ксенона к атому фтора, и поэтому в галогенидах инертных газов атом инертного газа является донором, а атом фтора или другого галогена — акцептором электрона. [c.199]

    Органические соединения класса пиридинов широко используются в качестве ингибиторов коррозии в сероводородсодержащих минерализованных коррозионных средах. В последнее время находят широкое применение их четвертичные соли, такие как хлористые аминопиридины. Однако не все соединения проявляют достаточную эффектив1юсть в одних и тех же условиях. Для установления зависимости степени заш иты стали индивидуальными соединениями от квантово-химических параметров последних были проведены расчеты методом пренебрежения двухатомным перекрыванием с помощью программы АМРАС таких параметров как дипольный момент молекул, энергии на верхних заполненных молекулярных орбиталях (ВЗМО) и на нижних свободных молекулярных орбиталях (НСМО), максимальный и минимальный заряды на атомах. [c.289]

    Метод Хюккеля. В последние 10—15 лет метод молекулярных орбиталей был применен для расчета характеристик очень многих молекул. Он широко пронру< даже в такие отрасли знания, где несколько десятилетий тому назад сама мысль о возможности использования квантовой механики казалась не заслуживающей внимания фантазией,— в теорию органических, реакций, биохимию, молекулярную биологию. Особенно широкое распространение в указанных областях получил вариант МО ЛКАО, предложенный Э. Хюккелем. [c.193]

    Первым П. м. был метод Хюккеля, примененный к исследованию сопряженных орг. молекул с учетом только я-электронов (1930). Для аром, углеводородов такой расчет содержит всего лишь один параметр, характеризующий энергию я-взаимодействия соседних атомных орбиталей. В методе Паризера — Парра — Попла (метод ППП, 1953), в отличие от метода Хюккеля, явным образом рассматривается взаимод. между я-злектронами расчет ведется в рамках теории самосогласованного поля (см. Молекулярных орбиталей метод) с частичным учетом конфигурац. взаимодействия (см. Конфигурационного взаимодействия метод). Это усовершенствование оказалось необходимым для расчета сопряженных систем с гетероатомами. При этом структура нек-рых матричных элементов детализирована их выражают через величины, имеющие непосредственный физ. смысл (напр., потенциал иони ции или сродство к электрону) другие матричные элементы по-прежнему рассматривают как подгоночные параметры. [c.472]

    Книга всесторонне и доходчиво, а самое главное методологически правильно знакомит с теорией химической связи и результатами ее применения к описанию строения и свойств соединений различных классов. Сначала изложены доквантовые идеи Дж. Льюиса о валентных (льюис овых) структурах и показано, что уже на основе представлений об обобществлении электронных пар и простого правила октета при помощи логических рассуждений о кратности связей и формальных зарядах на атомах удается без сложных математических выкладок, как говорится на пальцах , объяснить строение и свойства многих молекул. По существу, с этого начинается ознакомление с пронизывающими всю современную химию воззрениями и терминами одного из двух основных подходов в квантовой теории химического строения-метода валентных связей (ВС). К сожалению, несмотря на простоту и интуитивную привлекательность этих представлений, метод ВС очень сложен в вычислительном отношении и не позволяет на качественном уровне решать вопрос об энергетике электронных состояний молекул, без чего нельзя судить о их строении. Поэтому далее квантовая теория химической связи излагается, в основном, в рамках другого подхода-метода молекулярных орбиталей (МО). На примере двухатомных молекул вводятся важнейшие представления теории МО об орбитальном перекрывании и энергетических уровнях МО, их связывающем характере и узловых свойствах, а также о симметрии МО. Все это завершается построением обобщенных диаграмм МО для гомоядерных и гете-роядерных двухатомных молекул и обсуждением с их помощью строения и свойств многих конкретных систем попутно выясняется, что некоторые свойства молекул (например, магнитные) удается объяснить только на основе квантовой теории МО. Далее теория МО применяется к многоатомным молекулам, причем в одних случаях это делается в терминах локализованных МО (сходных с представлениями о направленных связях метода ВС) и для их конструирования вводится гибридизация атомных орбиталей, а в других-приходится обращаться к делокализованным МО. Обсуждение всех этих вопросов завершается интересно написанным разделом о возможностях молекулярной спектроскопии при установленни строения соединений здесь поясняются принципы колебательной спектро- [c.6]

    Второе нововведение заключается в том, что методы квантовой химии были, наконец, применены для расчета распределения а-электронной плотности в органических соединениях. Впервые метод молекулярных орбиталей был применен для расчета энергетики насыш енных углеводородов лишь в начале 50-х годов (Браун, 1953). Первые расчеты распределения а-электронных зарядов и построение соответствующих электронных диаграмм принадлежат. Сандорфи и Доделю (1954—1955). [c.172]

    Динамика развития метода валентных схем в целом отличается от рассмотренной только что истории метода молекулярных орбиталей. Метод валентных схем возник сразу как неэмпирический приближенный метод (работы В. Гейтлера, Ф. Лондона, Г. Вейля, Г. Румера, Л. Полинга, Дж. Слэтера и др.). Однако впоследствии более широкое применение получили полуэмпирические методы и качественное рассмотрение, например, расчеты, основанные на параметризации приближения полного спаривания. Касаясь этих работ, Ч. Коулсон отмечает Па первый взгляд [c.106]

    Метод молекулярных орбиталей был применен Липскомом и Гофф.мапом [151, 195, 196] к ионам В Н , В Н г и. В.Н , имеющим структуру бппирамиды. Рассмотрим ион В.Н - (со структурой пентагональной бипирамиды). При применении искусственного разделения на экваториальные и вершинные области из вершин [c.29]

    Метод молекулярных орбиталей был применен Липскомом и Гоффманом [151, 195, 196] к ионам В Н -, В Н - и В Щ-, имеющим структуру бипирамиды. Рассмотрим ион В Н (со структурой [c.29]

    Наиболее строгое объяснение природы связи в комплексных соединениях достигается применением метода молекулярных орбиталей. Этот метод значительно сложнее теории кристаллического поля расчет энергии связи в комплексных соединениях по методу МО требует использования мощных вычислительных машин. По теории кристаллического поля расчеты несравненно проще, и ею нередко пользуются при рассмотрении объектов, к которым она не вполне применима, для получения ориентировочных оценок. Для комплекса волновая функция молекулярной орбитали фмо представляет собой линейную комбинацию, состоящую из волновых функций орбитали центрального атома металла фм и групповой орбитали лигандов 2сфь (линейная комбинация определенных орбиталей лигандов)  [c.127]

    Лекция 7. Основные положения метода молекулярных орбиталей (МО). Энергетические диаграммы распределения электронной плотности в молекулах. Применение метода МО к молекулам, образованным из атомов элементов первого и второго периодов. Объяснение магнитных свойств и возможности существования двухатомных частиц с помощью метода МО. Лекция 6. Межмолекулярное взаимодействие. Природа межмолекулярных сил. Ориентационное, индуктивное, дисперсионное взаимодействие. Водородная связь. Влияние водородной связи на свойства вешества. Конденсированное состояние вещества. Кристаллическое состояние. Кристаллографические классы и втя системы.. Ьоморфизм и полимор( )Изм. Ионная, атомная и молеклярная, металлическая и кристаллическая рещетки. [c.179]

    На примере молекулы ТЮЦ, основное состояние которой спин-спарено (а ), можно показать эффективность применения метода МКД. Для этой молекулы был решен вопрос о том, на какой возбужденный уровень совершается электронный переход. Верхние занятые уровни Л и 2 принадлежат несвязывающим молекулярным орбиталям лигандов (рис. Х1У.9). Из МКД эксперимента по знаку [c.260]

    Сэндвичевые соединения. Карбонилы металлов открывают собой группу веществ, лежащих между неорганическими и органическими соединениями. К ним относятся и так называемые сэндвичевые соединения, такие, как ферроцен Рс(С Н )2 (см, рис. 75) или r( gHg)2. В этих соединениях атом металла расположен между двумя органическими циклами (отсюда и название сэндвич ). Метод ВС относит сэндвичевые соединения к электронодефицитным. Например, 10 связей металл — углерод в ферроцене требуют согласно ВС-методу 20 электронов, в то время как атом Fe предоставит 8, а два пентадиенильных кольца — 10 тг-электронов (всего 18). Описание ферроцена и других подобных соединений в методе ВС очень затруднено. Только теория молекулярных орбиталей дает правильное описание подобных молекул. Подход аналогичен к примененному при рассмотрении октаэдрических комплексов. [c.252]

    Молекулы с дефицитом электронов. В предыдущих разделах мы познакомились с применением метода МО к простейшим системам — двухатомным молекулам. Орбитали, которые охватывают только два ядра, называются двухцентровыми. Одним из примеров многоцентровых молекулярных орбиталей являются молекулы, в которых число валентных электронов меньше, чем 2 п — 1), где п — число атомов в молекуле, — так называемые электрондефицитные соединения. Такое условие возникает потому, что минимальное количество химических связей, необходимое для объединения п атомов, равно п— 1, а если каждая связь является двухэлектронной, то требуется 2 п — 1) электронов. Наиболее известный представитель этого класса — молекула диборана BjHe. Она состоит из восьми атомов и в ней должно быть по крайней мере семь связей, т. е. 14 электронов. Подсчет показывает, что на самом деле имеется только 12 валентных электронов. [c.195]

    Сравнение методов ВС и МО. Эти методы, на первый взгляд, совершенно различны, но более подробное сопоставление вскрывает много общих черт. В методе ВС предполагается, что атомы полностью сохраняют свою индивидуальность, и единственным изменением, происходящим при образовании молекулы, является обмен электронами между орбиталями соседних атомов. Метод МО, по существу, является распространением теории многоэлектронных атомов на молекулы. Если состояние атома описывается как совокупность атомных орбиталей, то аналогично можно рассматривать молекулу как совокупность молекулярных орбиталей, которые возникают из комбинации орбита-лей атомов, входящих в состав молекулы. Оба эти метбда скорее дополняют, чем противостоят друг другу. Аргументированный выбор между ними целиком зависит от тех задач, которые необходимо решить. В настоящее время в большинстве работ по теории химической связи применяется метод МО. Это объясняется тем, что в применении к многоатомным молекулам как сам метод МО, так и программирование расчетов на ЭВМ осуществляется проще, чем для метода ВС. С другой стороны, метод ВС дает более наглядное представление о химической связи и строении молекул. [c.198]

    Прежде чем обсуждать некоторые теории координационной связи следует отметить, что теория — не более чем приближение к дей ствительности. И если бывают из нее исключения, этого еще не достаточно, чтобы обесценить всю теорию. Более вероятно, что исключения указывают на наше неумение давать им удовлетворительные объяснения. Обычно нужно только видоизменять тео-шю таким образом, чтобы эти исключения были ею охвачены Лримером может служить современное состояние метода валент ных связей. Часто одни и те же явления могут быть объяснены двумя или даже более теориями, и тогда мы должны искать более фундаментальную концепцию, общую для обеих теорий, которая будет по всей вероятности лучшим приближением к действительности. Такое положение существует сейчас и с теориями кристаллического поля, и молекулярных орбиталей в их применении к комплексам. На их основе вырос в настоящее время более универ сальный метод, известный как теория поля лигандов. Электронная теория валентности, сформулированная Льюисом в 1916 г. и распространенная на многие системы Лэнгмюром е 1919 г. и другими авторами в течение последующего десятилетия дала химикам возможность выразить вернеровское понятие валентности с помощью электронных представлений. Основная за слуга в использовании новой теории валентности принадлежит Сиджвику и Лаури . Главные валентности Вернера были интерпретированы как результат электровалентности, или пере коса электрона, а побочные рассматривали как проявление ковалентности, или обобщения электронных пар. Главная валент ность может быть, а может и не быть ионной. Так, если во внутрен пей координационной сфере находится отрицательный ион, на пример ион хлора в нитрате хлорпентаамминохрома (И1) Сг(ЫНз)цС1](ЫОз)з, он может быть связан с атомом металла как главной, так и побочной валентностями. В данном случае ион хлора потерял свой ионный характер. Только нитрат-ионы насы щают главную валентность и поэтому сохраняют свой ионный рактер. [c.245]

    На этом заканчивается далеко не полное изложение применений метода МО ЛКАО к многоатомным молекулам. В последнее время Джонсоном и другими развивается еще одна разновидность метода молекулярных орбиталей, в которой обходятся без приближения ЛКАО. Это ССП—Ха метод рассеянных волн, в котором используется подход к расчету строения атомов и зонной структуры кристаллов, предложенный Слейтером, Этот метод имеет преимущество в выигрыше машинного времени при расчетах по сравнению с методом МО ЛКАО, но является пока удовлетворительным лишь при описании высокосимметричнык молекул [к-22], [к-46 . [c.253]

    Расчеты по методу молекулярных орбиталей даже для сравнительно несложных молекул очень громоздки и, как правило, требуют применения ЭВМ. Так, например, расчет пятиатомной молекулы требует затраты 5 ч машинного времени ЭВМ типа БЭСМ-6, выполняющей до миллиона операций в секунду. В нашу задачу не входит изложение методов расчетов молекулярных орбиталей, поэтому мы ограничимся лишь краткими указаниями на важнейшие особенности современных приемов расчета. [c.131]


Смотреть страницы где упоминается термин Молекулярных орбиталей метод применение: [c.61]    [c.115]    [c.257]    [c.253]   
Физические методы в неорганической химии (1967) -- [ c.69 ]




ПОИСК





Смотрите так же термины и статьи:

Метод молекулярных орбиталеи

Метод молекулярных орбиталей ММО

Молекулярная метод Метод молекулярных

Молекулярные орбитали орбитали

Орбитали метод

Орбиталь молекулярная



© 2024 chem21.info Реклама на сайте