Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Пропилен производство

    Методом низкотемпературного фракционирования смесь разделяют на этан, этилен, пропан, пропилен и топливный газ. Этан и пропан подвергают дальнейшему крекингу в трубчатых печах в присутствии водяного пара для получения этилена и пропилена. После компрессии и охлаждения газы снова направляют на установку для разделения газов. Ацетилен удаляется путем каталитического гидрирования либо из общего количества нефтезаводского газа, либо только из этиленовой фракции. Разделение пропана и пропилена осуществляется дистилляцией или, если это целесообразно, проведением со смесью ряда реакций. Стоимость установки для производства 90 ООО т этилена и 43 ООО т пропилена из нефтезаводских газов составляет 9,9 млн. долларов, цена 1 фунта этилена и пропилена 0,0241 доллара. [c.9]


    Олефины, содержащиеся в продуктах крекинга и особенно в крекинг-газах, являются хорошим и легко доступным для производства сырьем. Для увеличения ресурсов олефинового сырья парафины или более тяжелые фракции специально подвергают крекированию (пиролизу). Таким образом, этилен получается в результате крекинга различных газов С2—С4 (этан, пропан, бутан) и жидких фракций (газойль, лигроин и мазут). Пропилен получается при термическом и каталитическом крекинге лигроинов и газойлей, а также из пропана и бутана. [c.577]

    Некоторые наиболее важные процессы алкилирования ароматики практикуются в промышленности реакция бензола с этиленом с образованием этилбензола, который затем дегидрируется в стирол алкилирование моноядерной ароматики с пропиленом, что дает соответствующие изопропил-производные, которые в свою очередь превращаются в фенол, крезол и т. д. через промежуточные гидроперекиси (т. е. фенол и ацетон от гидроперекиси цимола) алкилирование бензола и нафталина с алкил-хлоридами с длинными цепочками для производства соответствующей алкилароматики, которая сульфируется в ядре серной кислотой (натриевой солью) для применения в очистке и, наконец, алкилирование фенолов с олефинами или алкильными галогенидами с целью получения алкилированных фенолов, использующихся как присадки (или как промежуточные продукты в производстве присадок) к топливам и маслам. Первый и третий процессы проходят в присутствии хлористого алюминия, который наряду с другими галогенидами металлов является наиболее важным [c.133]

    Индивидуальные газообразные углеводороды, которые получаются либо непосредственно из сырой нефти или природного газа, либо путем крекинга более тяжелых нефтепродуктов, используются для производства химических продуктов, пластмасс и синтетического каучука (см. гл. XIII) или как сырье процессов каталитического превращения — полимеризации и алкилирования, ведущих к получению жидких углеводородов (см. гл. II). Большинство процессов каталитического превращения базируется на использовании реакционной способности олефинов и диолефинов, которые содержатся в газе. Часто ненасыщенные соединения получают дегидрированием пли деметанизацией насыщенных углеводородов приблизительно такого же молекулярного веса. Так, этан моншо дегидрировать в этилен, а пропан либо дегидрировать в пропилен, либо разложить па этилен и метан. Эти и подобные реакции [1 —10]1 имеют место в термических процессах, протекающих при 550—750° С. Термическое разложение Taiioro типа легко объясняется радикальным механизмом. По существу аналогичный характер имеют реакции разложения жидких углеводородов. Тел не менее дегидрирование H-oj xana и к-бутиленов, которое [c.296]


    Производство изопропилового и бутилового спиртов. Основной способ получения изопропилового спирта — из газов крекинга, содержащих пропилен. Процесс начали применять в 1920 г. [c.202]

    В нефтях крайне редко и в незначительных количествах встречаются олефины. Они были обнаружены, например, в бакинской, пенсильванской, галицийской, эльзасской и некоторых других нефтях. Большое количество олефинов и некоторых других непредельных углеводородов появляется в продуктах деструктивной переработки нефти. Эти углеводороды отличаются высокой реакционной способностью и поэтому легко полимеризуются, осмоляются, что приводит к снижению срока службы и хранения нефтепродуктов. Непредельные углеводороды являются нежелательными компонентами моторных топлив и смазочных масел. Многие непредельные углеводороды — ацетилен, этилен, пропилен, бутилен, бутадиен — получили широкое применение в производстве полиэтилена, полипропилена, синтетического спирта и каучука, пластических масс и других продуктов. [c.24]

    Олефипы — этилен, пропилен, бутилепы диеновые углеводороды — бутадиен, изопрен ацетилен и его гомологи бензол, ксилолы, стирол, метилстирол, винилнафталин в ближайшие годы должны стать массовым сырьем для производства многих ценных химических продуктов таких, как политен, полипропилен, синтетический каучук, различные виды пластмасс, искусственные волокна и многие другие, важные для народного хозяйства продукты. [c.282]

    Пиролиз бензина. Последними исследованиями ряда институтов и лабораторий было показано, что наиболее ценные продукты для химической переработки получаются при пиролизе прямогонных бензиновых фракций, атакже газоконденсатного и газового бензинов. При этом, наряду с этиленом и пропиленом, получается значительное количество бутиленов, дивинила и ароматических углеводородов. Разработан процесс каталитического облагораживания легкого масла из смол пиролиза, позволяющий получить значительные количества ароматических углеводородов, кроме того, смолы пиролиза можно переработать в высококачественные полимерные соединения, находящие применение в производстве облицовочных плит и других строительных материалов. [c.314]

    Так, каталитическим крекингом получают дополнительные количества высокооктановых бензинов, посредством каталитического риформинга повышают октановое число бензинов и получают ароматические углеводороды (бензол, толуол, ксилолы и этилбензол). Гидроочистка позволяет производить реактивные и дизельные топлива с малым содержанием серы. Процесс пиролиза дает возможность получить из нефти важнейшее сырье для нефтехимии этилен, пропилен, бутилены и моноциклические ароматические углеводороды, а также сырье для производства высококачественных сажи и электродного кокса. [c.198]

    Пропилен служит для получения изопропилового спирта, являющегося хорошим растворителем и заменяющего в ряде случаев этиловый спирт—в производстве лаков, парфюмерии и др. [12, 13]. [c.16]

    Приведенные в конце книги обзорные таблицы потребления и производственных мощностей пропилена в различных странах свидетельствуют о повсеместном увеличении выпуска пропилена. Однако несмотря иа широкие возможности использования пропилена для производства различных продуктов (см. схему возможных превращений пропилена), в большинстве промышленных стран наблюдается избыток пропилена из-за постоянного роста производства этилена, при котором обязательно образуется пропилен. В США в 1963 г. избыток пропилена составил —8 млн. т. при потреблении пропилена в нефтехимии 1,54 млн. т. Избыточный пропилен был использован в США большей частью в качестве топлива. Тем не менее, предполагают [31], что после 1975 г. в США люжет оказаться дефицит пропилена. [c.41]

    Полигликоли добавляют к нефтяным маслам для улучшения их противоизносных свойств, а также применяют в качестве основы при изготовлении консистентных смазок. Смазки на основе полигликолей характеризуются высокой термической и коллоидальной стабильностью и хорошими низкотемпературными свойствами. Производство синтетических смазочных масел на базе полигликолевых соединений имеет достаточные сырьевые ресурсы. Исходными продуктами служат непредельные газообразные углеводороды (этилен и пропилен), которые могут быть получены из природного углеводородного газа и промышленных газов нефтеперерабатывающих заводов. [c.148]

    Газ, полученный при каталитическом крекинге, богат пропиленом, изобутаном и может быть использован для производства высокооктановых компонентов авиационного бензина, а также в качестве сырья для химической промышленности. [c.7]

    Стереорегулярный изопреновый каучук (СКИ) также обладает высокой прочностью, эластичностью, клейкостью, низким теплообразованием и хорошим сопротивлением к старению. По эластичности СКИ превосходит СКД и приближается к натуральному каучуку. Развитие производства СКИ прежде всего зависит от наличия ресурсов дешевого сырья для синтеза изопрена. Этими источниками сырья являются изопентан, изобутилен и формальдегид, а также пропилен. Наиболее просто технологически синтез изопрена осуществлялся путем дегидрирования изопентана, поэтому на основе последнего будет организовано промышленное производство изопрена. [c.340]


    В производстве пропилбензолов алкилированием бензола с пропиленом в присутствии мягких катализаторов, таких как трифто-ристый бор и фосфорная кислота, двузамещенные продукты главным образом являются орто- и иа/ а-изомерами [510, 511]. При алкилировании толуола с метилхлоридом в присутствии сильного катализатора (хлористого алюминия) при температурах от О до 40° С также получаются предпочтительно орто- и пара-изомеры, но при 50—100° С наблюдается больший выход мета-изомера [512]. Последний получается в количествах, намного превосходящих те, что достигаются в равновесной смеси при такой температуре. Изучение ксилольной изомеризации в присутствии [c.125]

    Ввиду высокой реакционной способности и сравнительной доступности олефины заняли преобладающее место как исходные вещества для органического синтеза. Из них наибольшее значение имеют этилен и пропилен, производство которых в США составляет соответственно около 15 и 7,5 млн. т в год. В меньшем масштабе применяют бутены, высшие олефины и еще меньше изопентены. [c.33]

    Изопропилбензол, получаемый алкилированием бензола пропиленом, также является высококачественной добавкой к бензинам. Путем дегидрирования из него получают а-метилстирол, применяющийся в качестве сополимера в производстве синтетических каучуков. Кроме того, из него путем окисления в жидкой фазе и разложения образующейся гидроперекиси кислотой [35) получают фенол и ацетон  [c.22]

    После 1956 г. были разработаны еще четыре химических процесса, исходным сырьем для которых является пропилен — производства акролеина, перекиси водорода (плюс ацетон), ал-лилового спирта (плюс ацетон) и высокомолекулярного полипропилена [19]. [c.22]

    Следуюш ими важнейшими мономерами сырья для нефтехимической промышленности являются олефины и прежде всего этилен и пропилен. Производство этих олефинов осуществляется на установках пиролиза. [c.196]

    Поскольку производство перекиси водорода совместно с органическими кислородными соединениями и пропиленом по-прежнему продолжает представлять интересе промышленной точки зрения, реакция окисления пропана в определенных условиях снова была подробно изучена Саттерфилдом, Уилсоном и др. [25]. [c.442]

    Широкий спрос существует также на нормальный и изобутан первый применяется в производстве бутадиена и других химических продуктов, второй — для алкилирования олефинов с целью получения компонентов бензина. В силу последних обстоятельств в настоящее время жидкие газы, выпускаемые на рынок, в основном состоят из пропана. В соответствии со спецификацией Национальной американской ассоциации по производству газового бензина [404] не исключается присутствие пропиленов в товарном пропане и бутиленов — в товарном бутане впрочем, эти олефины в нефтепереработке используются в качестве источника получения моторных топлив или химических продуктов. Спецификации включают требования по составу, содержанию воды и сернистых соединений и по упругости паров. [c.450]

    Из сказанного следует, что в настоящее время и в ближайшие годы единственным промышленно освоенным и экономичным методом производства синтетического изопропанола является метод сернокислотной гидратации пропилена. Достоинством этого метода является возможность использования иропан-пропиленовой фракции с содержанием пропилена 30—40% без предварительного концентрирования. Указанная фракция может быть получена в достаточных количествах с газофракционирующих установок нефтеперерабатывающих заводов, а также с установок пиролиза и газоразделения. Кроме того, пропилен в виде 40%-ной пропан- [c.47]

    В США в 1965 г. около 88% потребляемого пропилена получали на крекинг-установках по производству бензина, 12% — на кре-кинг-установках по производству этилена. В других странах доля пропилена, производимого на крекинг-установках по производству этилена, значительно выше, так как там меньше каталитических крекинг-установок. Пропилен до сих пор никогда не производился как главный продукт процесса, он является исключительно побочным продуктом [30]. [c.41]

    Пропилен является исходным мономером для производства полипропилена, акрилонитрила и бутадиена. [c.65]

    Газ богат ценными углеводородами—пропиленом, изобути-ном, изобутиленом и служит ценным сырьем для производства высокооктановых компонентов. [c.33]

    Наиболее эффективное и рациональное направление исполь — зс>вания многотоннажных ресурсов этих газов — синтез высокооктановых компонентов бензинов. В результате достигаются дальнейшее углубление переработки нефтяного сырья, увеличение ре — сурсов бензинов и, что не менее важно, повышение качества товарных авиа— и автобензинов. Олефины, особенно менее дефицитный пропилен, широко используются ныне как ценное сырье для Н1 фтехимического синтеза, в частности, для производства полипропилена, изопропилбензола и других нефтехимических продуктов. [c.136]

    Третья ветк а—производство на базе олефиновых углеводородов. Важнейшими полупродуктами в промышленности нефтехимического синтеза являются низкомолекулярные олефиновые углеводороды—этилен, пропилен и бутилены. На базе переработки этих продуктов основаны современные производства высококачественных пластических масс, синтетических волокон, синтетического каучука, моющих веществ и целого ряда других химических продуктов, таких, как синтетические спирты, альдегиды, кетоны, гликоли, фенол, окись этилена, нитрил акряловой кислоты и др., являющиеся, в свою очередь, ценными промежуточными продуктами в производствах органического синтеза. Основным источником получения олефиновых углеводородов является процесс пиролиза нефтепродуктов. [c.314]

    Вторичные олефины требуют более крепкой кислоты пропилен реагирует с серной кислотой крепостью 60—70% при повышенных температуре и давлении. Образованию средних (нейтральных) эфиров за счет моноэфиров благоприятствует повышенная концентрация кислоты. При производстве спиртов сернокислотным методом пропилен и н-бутилены поглощают 85—90%-ной серной кислотой, а вторичные амилены — 80—85%-ной кислотой в этих условиях не происходит интенсивной полимеризации. Этилен взаимодействует с серной кислотой крепостью 94—98% по литературным данным, полимерообразоваппе при этом пе происходит. [c.225]

    Назначение процесса — производство высокооктанового компонента бензинов каталитическим алкилированием изобутана бутиленами и пропиленом в присутствии серной кислоты. В промышленности процесс осуществляют в реакторах различных типов с непрерывным перемешиванием эмульсии кислота—углеводороды. [c.167]

    Яегкие побочные продукты крекинга — бутан-бутиленовая и пронан-пропиленовая фракции — представляют собой ценное сырье для производства как весьма важных компонентов авиационных и автомобильных бензинов, так и нефтехимических продуктов. Бутан-бутиленовая фракция является сырьем для алкилируюш их и полимеризационных установок из бутиленов и изобутана на алкилирующих установках получают авиационный алкилат, входящий в состав высококачественных авиабензинов. Пропан и пропилен перерабатывают в этилен и спирты, а нормальный бутан в бутадиен и т. д. [c.5]

    Алифатические продукты—метан, этилен, пропилен, бутилены, в производстве которых на долю нефтехимической промышленности в 1959 г. приходилось 86%  [c.351]

    Разработанный алгоритм был использован при поиске оптимального абсорбента для извлечения углеводородов С4-С8 из состава пирогаза в производстве этилена. В качестве ключевых компонентов исходной смеси были взяты пропилен (/) и диви- [c.33]

    Значительное место отведено расчету равновесий реакций синтеза важнейших мономеров и полупродуктов, являюш,ихся исходным сырьем для производства различных высокомолекулярных продуктов и пластиков в их числе ацетилен, этилен, пропилен, дивинил, изопрен ароматические углеводороды — бензол, толуол, ксилолы и другие алкилбен-золы — стирол, винилнафталин альдегиды — кетоны, кислоты, спирты, некоторые азотсодержащие соединения и др. [c.5]

    Природные газы широко используют для газификации промышленных районов и населенных пунктов кроме того, они служат исходным сырьем для производства ряда химических продуктов водорода, сажи, ацетилена, формальдегида, хлороформа н др. Более тяжелые углеводороды попутных газов применяют для бытовых нужд и автотранспорта, а также используют как сырье для пиролиза на этилен и пропилен, для производства бутадиеча, галоидопроизводных и многих других ценных веществ. [c.89]

    Пропилеи при очистке смесей отработанных газов сравнительно легко поглощается 80—90%-ной серной кислотой. При этом образуется изопропилсульфат, который затем переходит в изопропиловый спирт. Это привело к созданию первого нефтехимического продукта. В конце 20-х годов американская фирма Standard Oil o. ввела в действие первую установку по производству изопропилового спирта. С этого времени постоянно рос интерес к пропилену [5—31, [c.8]

    Назначение процесса — производство высокооктанового изо — компонента бензинов С— алкилированием изобутана бутиленами и пропиленом. Целевой продукт процесса — алкилат, состоящий практически нацело из изопарафинов, имеет высокое октановое число (90 — 95 по моторному методу). Октановое число основного компс>нента алкилата — изооктана (2,2,4 —триметилпентана) принято, как известно, за 100. [c.137]

    В последнее время исследован метод окисления диизопропилбензолов, получающихся в качестве побочных продуктов при алкилировании бензола пропиленом в производстве фенола и ацетона. Указанный метод производства диоксибен-золов имеет много общего с кумольным методом получения фенола и ацетона и позволит получить в крупных промыш- [c.371]

    Разработанный в СССР процесс алкилнрования бензола пропиленом в присутствии фосфорнокислотного катализатора характеризуется более низкими энергозатратами, чем в присутствии хлорида алюминия. Это достигается использованием тепла реакции для подогрева шихты, подаваемой на алкилирова-ние, выделением более 50% возвратного бензола, дросселированием, упрощением схемы разделения алкилата и отсутствием затрат иа отпарку углеводородов из сточных вод и азеотропиую осунлку. Внедрение этого процесса определяется производством фосфорнокнслотного катализатора. [c.171]

    Пропилен и более высокомолекулярные олефины также могут быть использованы для производства полипропилена, различных моющих средств, растворителей, спиртов методом прямой гидратации, альдегидов и спиртов методом оксосиитеза п т. д. [c.283]

    Окись пропилена применяется для производства пропилен-гликоля, нолигликолей и эфиров гликолей. Большое количество окиси пропилена потребляется в качестве антифриза и пластификатора. На базе пропиленгликоля получают лекарства, полиэфирные смолы, эфиры жирных кислот и другие химические продукты. [c.77]

    Предложены в качестве растворителей для депарафинизации различные смеси кетонов с пропаном или пропиленом дихлорме-тана или хлористого пропила с дихлорэтаном хлороформа, четы-)еххлористого углерода, пиридина, нитро- и хлорнитроалканов, -метилпирролидона и метилэтилкетона с толуолом р-хлорэфира с дихлоридами и др. [43, 44, 45, 51]. Несмотря на явные достоинства многих из этих растворителей пока отсутствует их крупно-тоннажное производство кроме того, многие из них токсичны и коррозионно-агрессивны. [c.145]

    Как известно, процессы депарафинизации и обезмасливаиия можно проводить в чисто углеводородных растворителях, таких как пропан и гептан. Эти растворители характеризуются высокой растворяющей способностью по отношению к твердым углеводородам, что требует глубокого охлаждения при производстве низкозастывающих масел, а отсюда — высокий ТЭД. В литературе [68, с. 183] имеются сведения о переводе промышленной установки депарафинизации в пропановом растворе на смесь пропилен — ацетон. Такой процесс позволяет депарафинировать сырье любой вязкости и получать масла с температурой застывания от —20 до —25 °С. Добавление ацетона к углеводородному растворителю снижает его растворяющую способность, что обеспечивает более полное выделение твердых углеводородов из раствора при снижении ТЭД до 10—15 °С. Растворитель одновременно служит и хладоагентом, причем его испарение происходит с определенной скоростью, для чего на установке предусмотрен автоматический контроль охлаждения суспензии твердых углеводородов. Во избежание обводнения ацетона, энергично поглощающего воду, существует секция для отделения воды. [c.158]

    Например, следует отметить новое направление в создании технологии производства ацетальдегидаи нитрила акриловой, кислоты на базе одностадийных процессов путем замены ацетилена более доступными и экономически выгодными этиленом и пропиленом. [c.186]

    Был проведен расчет на ЭВМ локальных эффективностей для смеси этан - этилен - пропилен в производстве концентрирс)-ванного этилена. [c.151]


Смотреть страницы где упоминается термин Пропилен производство: [c.455]    [c.159]    [c.61]    [c.588]    [c.176]    [c.149]   
Подготовка сырья для нефтехимии (1966) -- [ c.102 , c.130 ]

Производство сырья для нефтехимических синтезов (1983) -- [ c.21 , c.291 ]




ПОИСК





Смотрите так же термины и статьи:

Андросова В. М., Джанибеков Т. Г. Контроль производства пропилена высокой степени чистоты

Мировые мощности по производству пропилена

Мощности и объемы производства этилена и пропилена

Окись пропилена производство

Перспективы производства и потребления пропилена

Перспективы производства этилена и пропилена в России

Производство акрилонитрила окислительным аммонолизом пропилена

Производство и потребление пропилена

Производство и потребление этилена и пропилена в России

Производство изододецилбензолсульфоната на основе бензола и тетрамеров пропилена

Производство изоиропанола гидратацией пропилена

Производство изопропилбензола алкилированием бензола пропиленом в паровой фазе с применением фосфорнокислого катализатора

Производство изопропилбензола алкилированием бензола пропиленом в присутствии хлористого алюминия

Производство изопропилбензола жидкофазным алкилированием бензола пропиленом в присутствии серной кислоты

Производство изопропилового спирта гидратацией пропилена

Производство изопропилового спирта сернокислотной гидратацией пропилена

Производство пропилена и бутенов методом деструктивной переработки нефтяных фракций

Производство сульфонола на основе бензола и тетрамеров пропилена

Пропилен, в производстве ацетона

Пропилен, в производстве изопропилбензола

Сборники пропилена в производстве эпихлоргидрина

Технический уровень производства этилена и пропилена в России

Технология производства алкилбензолсульфонатов натрия на основе полимеров пропилена

Технология производства пропилена

Установка пиролиза для производства этилена, пропилена и бутилена

Циклодиены как сомономеры в производстве этилен-пропилен-диеновых каучуков

Экономические перспективы использования пропилена. Производство изопропилового спирта—ацетона



© 2025 chem21.info Реклама на сайте