Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Технология производства пропилена

    Бурное развитие органической технологии — производство пластических масс, химических волокон, синтетических каучуков, лаков, красителей, растворителей и т. п. — требует огромных количеств углеводородного сырья, которое получается в результате химической переработки различных топлив. До недавнего времени основным источником сырья для органического синтеза был уголь, из которого при коксовании получают бензол, толуол, ксилолы, фенол, нафталин, антрацен, водород, метай, этилен и другие продукты. В нефти, находящейся в недрах земли, всегда присутствуют растворенные газы, которые при добыче выделяются из нее. Эти так называемые попутные газы содержат метан, этан, пропан, бутан и другие углеводороды. На 1 т нефти в среднем приходится 30—50 м попутных газов, которые являются ценным сырьем для химической промыщленности. Источником углеводородного сырья служат также газы, получаемые при переработке нефти крекинге, пиролизе, риформинге. В этих газах содержатся предельные углеводороды метан, этан, пропан, бутаны и непредельные углеводороды этилен, пропилен и др. Наряду с газообразными углеводородами при переработке нефти могут быть получены ароматические углеводороды бензол, толуол, ксилолы и их смеси. [c.29]


    Процесс производства крезолов (2.7), одной из стадий которого является алкилирование толуола, очень схож с кумольным синтезом фенола (за исключением стадии окисления). Эта технология включает алкилирование толуола пропиленом в присутствии трп-хлорида алюминия или другой подходящей кислоты Льюиса (2.6) с образованием смеси изомерных метилизопропилбензолов, содержащей не более 5% орго-изомера мольное соотношение мета- пара- составляет приблизительно 2 1 [20]. [c.25]

    Технология производства стирола и оксида пропилена использует в качестве сырья доступные, производимые в больших количествах этилбензол и пропилен. Этот процесс нельзя отнести к малостадийным, поскольку он включает в себя несколько химических реакций окисление этилбензола в гидропероксид, эпоксвдирова-ние пропилена, дегидратация метилфенилкарбинола, гидрирование ацетофенона. Тем не менее, даже такая многоступенчатая структура технологии дает возможность получать целевые продукты с селективностью по оксиду пропилена 95—97 % и выходом стирола по этилбензолу до 90 %. Таким образом, рассматриваемое производство можно отнести к высокоэффективным. Более того, такая технология является ярким примером сопряженных производств, обеспечивающих одновременное получение нескольких целевых продуктов, позволяет выпускать стирол с качеством более высоким, чем при дегидрировании (с точки зрения процессов полимеризации) и заменить экологически грязное производство оксида пропилена хлоргидринным способом. В связи с многостадийным характером технологии следует выделить в ней узлы, обеспечивающие высокие конверсии за один проход — эпоксидирование, дегидратация, гидрирование, и не обладающие таким характером - получение гидропероксида этилбензола. В этом случае ограничения по конверсии этилбензола связаны с последовательным характером побочных реакций и взрывоопасностью гидропероксида при высоких концентрациях в температурных условиях (140-160 С) протекания реакции. Соответственно, рециркуляционные потоки, направленные на полное использование исходного сырья, имеют [c.321]

    За последние годы в технологию процесса внесены некоторые изменения, уменьшающие закоксовывание катализатора благодаря сокращению перепада температуры по высоте слоя и улучшенной очистке сырья от вредных примесей. Предложено разбавлять катализатор инертным силикагелевым носителем или фосфорнокислотным катализатором прямой гидратации этилена с целью удлинения срока службы катализатора и облегчения его выгрузки. Подобран оптимальный режим ввода воды в катализатор для предотвращения его дегидратации. Созданы установки сравнительно большой мощности, в которых используется реактор башенного типа. Схемы этих установок предусматривают возможность рециркуляции сырья и части продуктов реакции и обеспечивают производство тримеров и тетрамеров пропилена, димеров бутенов или кумола (алкилированием бензола пропиленом на том же фосфорнокислотном катализаторе). [c.326]


    Технология производства полипропилена аналогична той, которая применяется для получения полиэтилена при низком давлении. Полимеризация пропилена производится в углеводородном растворителе при 60—80° С и давлении 2—8 ат. Пропилен полимеризуется медленнее, чем этилен. В зависимости от условий реакции (температура, давление, продолжительность процесса, примеси) молекулярный вес полипропилена находится в пределах от 40 ООО до 700 ООО. [c.341]

    В более слабых кислотах <88—90 / ) этилен почти нерастворим. Пропилен реагирует уже с 85 /<гной кислотой. н-Бутилен растворим в 69—72< /о-ной кислоте и легко полимеризуется более крепкой кислотой. Изобутилен дает изобутилсерную кислоту уже с 54 /о-ной кислотой. Реакции этиленовых углеводородов с серной кислотой с последующим омылением образующихся кислых эфиров широко используются в технологии производства спиртов из непредельных углеводородов газа крекинга и пиролиза нефтепродуктов, [c.135]

    В одном из вариантов технологии производства СКЭП в образующемся стоке содержатся ванадий, алюминий, цинк, а из органических веществ — этилен и пропилен (содержание последних ограничивается их высокой летучестью), олигомеры этих мономеров, изопентан или бензин, этиловый спирт, стеараты и вводимые в состав каучука антиоксиданты. [c.14]

    В конце 50-х годов средняя цена на акрилонитрил, вырабатываемый в США, составляла 26—29 цент/фунт при цене на ацетилен около 11 — 13 цент/фунт. Пропилен же в то время стоил около 2 цент/фунт. Несмотря на то что технология производства акрилонитрила из пропилена сложнее (и, следовательно, стоимость оборудования выше), чем из ацетилена, более низкая стоимость исходного сырья с лихвой компенсирует этот недостаток. [c.208]

    В настоящее время известны следующие гетерогенные катализаторы алкилирования бензола пропиленом фосфорнокислотный, катализаторы на основе оксидов и солей металлов, оксиды, модифицированные ВР , аморфные алюмосиликаты, цеолиты и катиониты. Применение твердых катализаторов намного упрощает технологическую схему, позволяет автоматизировать процесс, исключает проблему коррозии аппаратуры, облегчает отделение продуктов реакции, не требующих дополнительной очистки, которая в гомогенном катализе приводит к образованию стойких эмульсий и больших объемов сточных вод. Эти катализаторы можно регенерировать и использовать многократно. В данном случае мы рассмотрим технологию алкилирования на цеолитах и катионитах. Первый пример промышленной реализации процесса позволяет приблизить производство к безотходному, а второй — применить совмещенный реакционно-ректификационный процесс. Перспективными представляются цеолитсодержащие катализаторы СаНУ , содержащие редкоземельные элементы, на которых переалкилирование протекает в условиях реакции алкилирования, так как указанные ранее побочные реакции снижают селективность цеолитсодержащих катализаторов, вызывают их дезактивацию и старение. В связи с этим катализаторы периодически необходимо регенерировать при 400-500 °С кислородсодержащим газом или воздухом. [c.290]

    Перспективы развития таких важных продуктов нефтехимического производства, как этилен, пропилен, бензол и его гомологи, стали в последние годы одной из актуальнейших проблем, широко обсуждаемых в научных журналах по химии и химической технологии. Наряду с нефтью и природным газом обсуждается также и возможность использования бурых углей как исходного материала для производства этих важнейших источников углеводородного химического сырья [7—9]. [c.11]

    Понятно, что в таких условиях развитие пиролиза ориентировалось именно на прямогонный бензин в качестве источника сырья. А такое сырье, как мы уже знаем, дает более высокое соотношение пропилен этилен — скажем, 0,6 вместо 0,4. Но постепенно прямогонный бензин стали в большей мере использовать для производства автомобильных топлив, не так сильна стала нужда в топочном мазуте. А вот сырья для производства пропилена стало уже не хватать. И тогда ученые направили свои усилия на разработку новой технологии, базирующейся на реакции дегидрирования. [c.109]

    Основным сырьем для производства всех синтетических материалов служат олефиновые, ароматические и высшие парафиновые углеводороды. Создание крупнотоннажного производства этих продуктов началось в конце 40-х годов. Особенно быстро росло производство и потребление этилена и пропилена. Для удовлетворения потребности в этилене и пропилене в 1958—1970 гг. были введены крупные пиролизные и газофракционирующие установки, единичная мощность которых непрерывно увеличивалась, совершенствовались их оборудование и технология. [c.30]

    Олефины. Основным сырьем для производства высокополимеров являются олефиновые углеводороды. Наиболее значительны ресурсы таких олефинов, как этилен, пропилен, бутилены, изобутилен, бутадиен, изопрен и стирол. Все эти виды сырья вырабатываются нефтяной промышленностью. Олефины крайне редко содержатся непосредственно в исходных нефтях и их производство является важной задачей технологии нефтепереработки. [c.283]


    Эти методы появились в результате необходимости разделения фракций С4 и Сз для производства компонентов бензина или бензина методами алкилирования изобутапа или изобутиленами, каталитической димеризации изобутилена, полимеризацией прони.чена, сополимеризацией пропилена с бутиленами и др. Однако этими методами разделения нельзя получить чистые компоненты (99,8%-ный этилен для получения полиэтилена и стирола, пропилен для полипропилена, бутилены, свободные от изобутиленов, и др.). При фракционировании заводских газов на чистые углеводороды возникают специальные технические вопросы поэтому решение их можно рассматривать как отдельную технологию, связанную с установками переработки чистых углеводородов в химической промышленности. [c.289]

    На производство 1 т кумола в процессе расходуется 660 кг бензола, 365 кг пропилена, 25 кВт ч электроэнергии, 1 ГДж топлива, 13 охлаждающей воды. Новые процессы алкилирования бензола пропиленом предусматривают использование различных цеолитных катализаторов и более совершенной реакционно-ректификационной технологии. [c.887]

    В кабельной промышленности при применении полиэтилена (вместе с поливинилхлоридом) высвобождается большое количество свинца, меди, шелка, хлопчатобумажной пряжи и других дорогостоящих материалов. Помимо экономии в сырье переход на производство кабелей и проводов с пластмассовой изоляцией сокращает трудоемкость процесса наложения изоляции, упрощает технологию и приводит к значительному снижению капитальных затрат. Весьма перспективно- использование в кабельной промышленности сополимеров этилена с пропиленом, бутиленом и т. п. [c.36]

    Кооперирование и комбинирование различных процессов, установок и производств, взаимосвязанных единой технологией, позволяет более полно использовать сырье, утилизировать отходы производства, объединить последовательные стадии переработки. Например, в пределах одного комбината можно получать ацетальдегид, уксусную кислоту, поливинилбутираль и другие продукты на базе производства винилацетата. В производствах, объединенных единой технологией, в качестве сырья используется этилен, получаемый при переработке нефтяных фракций. При этом одновременно образуется пропилен, являющийся сырьем для оксосинтеза, а далее 2-этилгексанола и пластификаторов. Для этих же целей может использоваться и ацетальдегид. [c.19]

    Органические хлоропродукты составляют подавляющую часть продукции хлорной промышленности. Поэтому ее развитие тесно связано с возникновением и развитием такой прогрессивной области химической технологии, как нефтехимия, а также с увеличением добычи и потребления природных и попутных газов. Эти сравнительно новые отрасли промышленности дают доступное и дешевое органическое сырье в виде газов (метан, ацетилен, этилен, пропилен и другие углеводороды) и жидких органических веществ (бензол, этиловый спирт, керосин и др.), пригодных для переработки в хлоропродукты. Все это определяет высокие темпы развития производства хлора в последние годы в США, Японии, ФРГ, Англии, Франции, Италии и других странах.  [c.8]

    Для производства этилбензола фосфорнокислотный катализатор не применяется, а используется хлористый алюминий. Алкилирование бензола этиленом в промышленности в присутствии хлористого алюминия осуществляется по схеме и технологии, аналогичным описанным выше для алкилирования пропиленом. Вместе с тем, появились и новые схемы. [c.84]

    Замена сырья часто приводит к тому, что для получения продукта используется другой метод производства. Таким образом, в отрасли основного органического и нефтехимического синтеза идет постепенная замена ацетилена более дешевыми нефтехимическими продуктами в производстве нитрила акриловой кислоты — пропиленом, в производстве хлоропрена - бутадиеном и т.д. Во МН0ГР1Х случаях усовершенствование технологии касается вытеснения не только дорогостояших, но и загрязняющих атмосферу и воду исходных видов сырья и полупродуктов. Особенно характерно это проявилось в производствах этиленоксида и пропиленоксида, где технология, основанная на использовании хлора (хлоргидринный процесс), была заменена технологией прямого окисления этилена и пропилена. При этом одновременно удалось снизить и затраты на производство. Так, переход на метод прямого окисления этилена в производстве этиленоксида позволил более чем в 2 раза снизить затраты на его производство. [c.238]

    Следует при решении вопросов о строительстве предприятий, потребляющих ацетилен, выполнять сравнительные расчеты, так как однозначные рекомендации, без учета конкретных местных условий, не могут быть сформулированы. При этом к производству ацетилена следует прибегать лишь в тех случаях, когда иные углеводороды (этилен, пропилен) не могут быть применены по условиям технологии или из-за их отсутствия. [c.84]

    Например, следует отметить новое направление в создании технологии производства ацетальдегидаи нитрила акриловой, кислоты на базе одностадийных процессов путем замены ацетилена более доступными и экономически выгодными этиленом и пропиленом. [c.186]

    В последние годы технология производства метакриловых мономеров значительно обновилась. Помимо ацетонциангидринного процесса разработаны еще 4 технологии, базирующиеся иа этилене, пропилене, изобутилене и изобутане. Первый способ представляет собой комбинацию процессов кар-бонилирования или гидроформилирования этилена с реакцией конденсации полученного карбонильного соединения Сз и формальдегида или эквивалентного ему соединения. Второй заключается в карбонилировании пропилена (или аллильного соединения) с последующим окислительным дегидрированием образующейся изомасляной кислоты или ее эфира. [c.343]

    В случае использования молибдата кобальта как катализатора возможно и одностадийное окисление про пилена в акриловую кислоту при 400—500 °С. В реактор подают смесь из 10 объемн. % пропилена, 50 объемн. % воздуха и 40 о бъемн. % водяного пара, причем образуется смесь акролеина, акриловой кислоты и продуктов более глубокого и полного окисления. Непревращенный пропилен и акролеин возвращают на реакцию. Выход акриловой кислоты несколько ниже, чем при двухстадийном процессе, но это может окупиться упрощением технологии производства. Учитывая дешевизну исходных веществ, описанные методы синтеза акриловой и метакриловой кислот следует считать перспективными. Сведений об их промышленной реализации пока не имеется. [c.619]

    Широта марочного ассортимента ПЭВП достигается теми же путями, что и ПЭНП, в частности в результате сополимеризации с другими сомономерами. К сополимерам этой группы могут быть отнесены многочисленные сополимеры этилена с пропиленом (до 7%), а-бутиленом (до 4%), гексеном, широко выпускаемые за рубежом. Сополимеры получают по технологии, близкой к технологии производства ПЭВП и в ряде случаев на тех же установках. [c.45]

    Возникает вопрос какова судьба ФС в будушем Долгосрочный прогноз показывает, что от других полимеров ФС выгодно отличаются надежностью источников природного сырья и относительно стабильной ценой (рис. 1.4). Действительно, сегодня общепризнано, что в обозримом будущем наступит момент, когда будут истощены все месторождения нефти, но еще далеко не скоро подобное положение может сложиться с основным источником исходных материалов для производства ФС — каменным углем. Когда источники нефти иссякнут, сырье для основного органического синтеза (этилен и пропилен) придется получать по относительно сложной технологии (например, этилен — дегидратацией этанола по Фише-РУ — Тропшу). Однако основные исходные материалы для производства ФС — фенол, крезолы и формальдегид (из метанола) — будут получать так же, как и сегодня — из каменного угля. [c.19]

    Снижение выработки окиси этилена хлоргидринным методом происходило также за счет переключения заводов, работающих по этому методу, на производство окиси пропилена через пропилен-хлоргидрин, поскольку в технологии получения обоих продуктов лрактически нет никакой разницы, а хлоргидринный метод получения окиси пропилена пока является единственным методом, используемым в промышленном масштабе. [c.11]

    Процесс образования фенола довольно подробно описан Хоком и Кропфом за, ь Стадия алкилирования представляет собой обычную каталитическую реакцию между пропиленом и бензолом в жидкой илн паровой фазе. Так как производство кумола уже существовало во время войны в США, где им пользовались для улучшения качества моторного топлива, то технология его получения была использована и в производстве фенола. В качестве катализаторов алкилирования применялись минеральные кислоты, фтористый водород, трехфтористый бор и соли металлов типа катализаторов Фриделя и Крафтса. Получающиеся алкилаты требуют очистки, особенно от производных тиофена, действующих как ингибиторы на стадии окисления. [c.444]

    Прогресс в химии полимеров — появление новых представлений в стереохимии высокомолекулярных соединений, новые катализаторы для стереоспецифической полимеризации, получение новых полимеров и сополимеров, синтез полиацетилена и т. п.— неразрывно связан с дальнейшей разработкой методов полимеризации и исследованиями в области металлоорганических катализаторов. За прошедщее десятилетие создано промышленное производство полиэтилена, полипропилена, сополимеров этилена с пропиленом во многих странах, что еще более стимулировало дальнейшее развитие исследований в этой области, выражающееся в неуклонном росте числа ежегодных публикаций. В первых двух выпусках серии Итоги науки по полимерам 1 детально рассмотрена химия и технология полиолефинов и результаты исследований за период с 1953 по 1958 г. включительно. [c.237]

    В последнее время значительно увеличивается производство крезолов в Японии [32], где вводятся в действие новые мощности по технологии фирмы 8шп1шо1о . Сырьем служит толуол и пропилен. Если при традиционном способе производства выход, т -крезола составлял 50—52%, то по новой технологии он возрос до 61—62%. [c.31]

    Технология кислотной полимеризации олефинов. В присутствии твердого фосфорнокислотного катализатора в промышленности полимеризуют пропилен, изобутилен, смеси бутиленов с пропиленом и бутиленов с амиленами — для производства тримера и тетрамера пропилена (изононена и изододецена), диизобутилена, сополимера пропилена и н-бутилена (изогептена) и т. д. [c.69]

    Пропилен и н-бутены. Поскольку пропилен получается только как побочный продукт процессов нефтепереработки или производства этилена, экономика его не может рассматриваться изолированно от основ- ных продуктов. Выше уже были рассмотрены факторы, которые неизбежно приведут к дальнейшему повышению цен на пропан и прямогонные бензины. Кроме того, современные направления развития технологии неизбежно повлекут уменьшение образования пропилена на нефтеперерабатывающих заводах и рост собственного потребления его для нужд нефтепереработки. Наконец, можно ожидать, что потребление пропилена в химической промышленности по темпам роста обгонит потребление этилена. Поэтому можно ожидать, что потребление пропилена в 1975 г. возрастет в 5 раз по сравнению с 1965 г., в то время как. ротреблёние этилена - примерно лишь в 4 раза. [c.13]

    Поскольку пропилен получается совместно с этиленом, масштабы и региональная структура потребления пропилена влияют на выбор сырья для этиленовых установок. Как показал анализ, пиролизные установки, работаюгцие на легком углеводородном сырье (этане и пропане) и обеспечиваю1цие наименьшие издержки производства этилена, не позволяют удовлетворять растущий спрос на пропилен. В этой связи требуется либо использование более тяжелого пиролизного сырья (нафты, газойля), либо применение технологии дегидрирования пропана, либо увеличение производства пропилена на НПЗ. [c.34]

    По технологии фирмы Kellogg и Monsanto процесс получения кумола протекает в присутствии катализатора хлорида алюминия й хлористого водорода. Процесс в основном предназначен для увеличения мощности действующих установок. В этом процессе алкилирование происходит в небольшом реакционном пространстве. Продукты реакции смешиваются с рециркулирующими полиизопропил-бензолами, состоящими в основном из диизопропилбензола, и подаются в блок трансалкилирования, где происходит их превращение в кумол. Полученный кумол после отмывки от катализатора идет в секцию разделения, где выделяются кумол, пропан, непрореагировавший бензол и диизопропилбензол. Применение стадии трансалкилирования позволяет вести работу при повышенном отношений пропилен/бензол, что определяет низкий коэффициент рециркулирования бензола и снижение расхода электроэнергии. Несколько действующих установок по производству кумола были модернизированы по технологии Monsanto. [c.256]

    Среди производств, имеющихся в составе нефтехимического комплекса в г. Гаосюн этилен - 400 тыс. т/год, пропилен - 200, бутадиен - 170, стирол - 340, малеиновый ангидрид - 20, найлон-6 - 21 (по технологии фирмы Zimmer), винилацетат - 100 (по технологии [c.478]


Смотреть страницы где упоминается термин Технология производства пропилена: [c.163]    [c.207]    [c.392]    [c.55]    [c.75]    [c.364]    [c.254]    [c.420]    [c.441]    [c.463]    [c.481]   
Смотреть главы в:

Мировая нефтехимическая промышленность -> Технология производства пропилена




ПОИСК





Смотрите так же термины и статьи:

Пропилен производство

Технология производства алкилбензолсульфонатов натрия на основе полимеров пропилена



© 2025 chem21.info Реклама на сайте