Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Масла Нефтяные окисление

    В процессе работы нефтяные масла под действием кислорода воздуха и повышенных температур окисляются, претерпевая при этом в течение времени более или менее заметные изменения. Окисление масел приводит к появлению в них кислот, способных при известных условиях вызывать коррозию деталей двигателей и механизмов. Помимо кислот в результате окисления образуются растворимые и не растворимые в маслах смолистые вещества и продукты их конденсации и полимеризации, которые, отлагаясь в маслопроводах, нарушают циркуляцию масел и загрязняют двигатели и механизмы либо оказывают отрицательное влияние на другие свойства масел (например, понижают диэлектрическую прочность трансформаторного масла). Многие масла (например, масла для двигателей внутреннего сгорания, для паровых машин) в зоне высоких температур подвергаются дополнительно термическому разложению, что в конечном счете приводит к нагарообразованию. [c.212]


    Природные жиры и жирные кислоты были первыми веществами, примененными для улучшения смазочных свойств нефтяных масел. Еще в недалеком прошлом широко использовалось компаундирование минеральных масел с растительными и животными жирами для смазки тихоходных и высоконагруженных механизмов, для червячных передач тяжелых сепараторов и других машин [1]. В СССР для этих целей применялись смеси минерального масла соответствующей вязкости с сурепным или горчичным маслом, предварительно окисленным путем продувания через него воздуха при повышенной температуре для улучшения растворимости его в минеральном масле. В Англии и во Франции использование растительных и животных жиров в смеси с минеральными маслами широко практикуется и сейчас. [c.517]

    Стабильность против окисления Масла нефтяные Окисление масла в приборе ВТИ под воздействием кислорода при повышенной температуре в присутствии катализатора с последующим определением кислотного числа, содержания летучих низкомолекулярных кислот, осадка 981—75 [c.56]

    Значительную стойкость природным нефтяным эмульсиям придает обычно присутствующий в нефти эмульгатор, который адсорбируется на поверхности диспергированных частиц. Эмульгаторами для нефтяных эмульсий являются коллоидные растворы смолы, асфальтены, мыла нафтеновых кислот, а также тонко диспергированные глины, мелкий песок, суспензии металлов и др. Они обладают способностью прилипать к поверхности раздела двух фаз) эмульсии, образуя защитную броню глобулы. Эмульгаторы, которые способствуют образованию эмульсии масла в виде глобул в дисперсионной среде —воде (гидрофильные эмульгаторы), представляют собой коллоидные растворы веществ, активных в воде, т. е. растворяющихся или разбухающих в ней (например, щелочные мыла, белковые вещества, желатин). Вещества, растворимые в маслах (например, смолы, известковые мыла, окисленные нефтепродукты), носят названия гидрофобных, или олеофильных эмульгаторов. В этой эмульсии вода содержится в виде глобул, взвешенных в дисперсионной среде — нефти. [c.11]

    К первому относятся металлокомплексные соединения переходных металлов (Ре, Со, N1, Си, Мп, Мо) и в качестве лигандов к ним — соединения хелатного типа (шиффовы основания, дитиофосфаты, дитиокарбаматы, р-дикетоны), имеющие в своем составе атомы Ы, 8, О, Р. Выбор лигандов обусловливается термоокислительной стабильностью (при 150—280°С) соединений, полученных на их основе. Для повышения их растворимости в нефтяных фракциях [0,1-"8% (масс.)] применяют комплексы, содержащие олеофильные заместители (алкильные, алк-оксильные или ароматические). К второму типу относятся Ыа-, К-, Ы-, Mg-, Са-, Зг- и Ва-соли карбоновых, дитиофосфорных и дитиокарбоновых кислот. Третий тип металлсодержащих ингибиторов окисления включает сульфиды, оксиды, гидроксиды и соли, диспергированные в нефтепродуктах при 150—250 °С с помощью ультразвука и другими методами. К четвертому типу противоокислителей относятся почти все перечисленные металлсодержащие производных алкилароматических аминов, замещенных фенолов и хинонов. Такие композиции присадок эффективны и в синтетических маслах на основе сложных эфиров при температуре до 250—260°С. В ряде случаев использование этих композиций позволяет получить присадки полифункцио-нального действия. [c.94]


    Антиокислительная стабильность индустриальных масел в процессе эксплуатации и хранения — одна из важных характеристик их эксплуатационных свойств. По антиокислительной или химической стабильности определяют стойкость масла к окислению кислородом воздуха. Все нефтяные масла, соприкасаясь с воздухом при высокой температуре, взаимодействуют с кислородом и окисляются. Недостаточная антиокислительная стабильность масел приводит к быстрому их окислению, сопровождающемуся образованием растворимых и нерастворимых продуктов окисления (органических кислот, смол, асфальтенов и др.). При этом в масле появляются осадки в виде шлама, нарушающие циркуляцию масла в системе и образующие агрессивные продукты, которые вызывают коррозию деталей машин. Срок службы масла при окислении значительно сокращается, повышается его коррозионность, ухудшается способность отделять воду и растворенный воздух. На окисление масла влияют многие факторы температура, пенообразование, содержание воды, органических кислот, металлических продуктов изнашивания и других загрязнений. [c.266]

    При работе в машинах и аппаратах нефтяные масла соприкасаются с металлами, подвергаются действию окружающего воздуха, температуры, давления, электрического поля, естественного света и других факторов, под влиянием которых с течением времени происходит изменение свойств масла разложение, окисление, полимеризация и конденсация углеводородов, обугливание (неполное сгорание), разжижение горючим, загрязнение посторонними веществами и обводнение. [c.10]

    Несмотря на то, что осерненные нефтяные масла способствуют окислению стали в условиях сверхвысоких давлений, сульфид железа является необходимым, хотя и второстепенным, Компонентом несущей смазочной пленки. [c.50]

    Получение пенобетона. Оптимизация плотности, прочности, теплопроводности и других свойств пенобетонов путем регулирования процессов воздухововлечения в бетонные смеси и стабилизации трехфазных пен. — Пенообразователи на основе белковых гидролизатов нефтяные сульфонаты алкилсульфаты мыла карбоновых кислот нефтяные масла продукты окисления масел и парафина. [c.330]

    Определение натровой пробы с подкислением необходимо для определения степени очистки нефтяных масел. Как следствие очистки натровая проба показывает возможную, ожидаемую стабильность масла против окисления. [c.40]

    Смазочные масла не должны вызывать коррозии металлов. Это общее требование оценивается прежде всего кислотным, числом, которое для всех масел нормируется в очень узких пределах 0,05—0,35 мг КОН на 1 г масла. Кроме того, для многих трансмиссионных масел, для масел, применяемых в холодильных машинах, и для сульфофрезола установлено специальное ускоренное испытание на коррозию стальных и медных пластинок при 100 °С в течение 3 ч, которое все эти масла должны выдерживать. Очень серьезное эксплуатационное значение для многих групп нефтяных масел (моторных, турбинных, компрессорных, для холодильных машин и трансформаторных) имеет химическая стабильность, т. е. способность масла противостоять окислению кислородом воздуха. [c.119]

    Основными компонентами нефтяных масел являются углеводороды смешанного строения, содержащие одновременно структурные элементы нафтено-парафинового, парафино-ароматического или парафино-нафтено-ароматического характера. Углеводородов, содержащих только нафтеновые или ароматические циклы и лишенные боковых алкильных цепей, в маслах практически нет. Отсутствуют в товарных маслах и нормальные парафиновые углеводороды, так как при производстве масел обычно применяется глубокая депарафинизацня. Кроме углеводородов в маслах имеются и разнообразные гетероорганические соединения, содержащие серу, кислород, азот, а также различные металлы. Все это вносит большую сложность в изучение зависимости эксплуатационных свойств масел (в том числе и стабильности против окисления) от их химического состава. [c.65]

    Как известно, 110 объему производства и применения среди смазочных материалов ведущее. место занимают нефтяные масла. Из общего объема собранных отработанных масел 70 -90% используют в качестве топлива, что, естественно, является нерациональным. Современными исследованиями установлено, что лишь незначительная часть масла в процессе его эксплуатации претерпевает существенные химические превращения (сбрасываются присадки, окисляются тяжелые углеводороды).Удалив из отработанного масла продукты окисления, механические примеси, попавшие в масло топливные фракции и воду, можно [c.52]

    Из изложенного следует весьма важный вывод в сложных смесях углеводородов, которыми являются нефтяные топлива и масла, могут присутствовать соединения, являющиеся эффективными ингибиторами окисления. Подобные соединения получили название естественных или природных ингибиторов, в отличие от искусственных ингибиторов, специально вводимых в топлива и масла для повышения их противоокислительной стабильности. Следовательно, процесс окисления топлив и масел в начальной стадии относится к так называемому ингибированному окислению, в котором одновременно с зарождением цепей протекают [c.39]


    Кроме сернистых соединений на окисление масел влияют и содержащиеся в них другие неуглеводородные компоненты, в первую очередь смолисто-асфальтеновые вещества. Эти продукты остаются в маслах в количестве нескольких процентов, особенно в высоковязких остаточных маслах (несмотря на глубокую очистку масел в процессе их производства). Смолисто-асфальтеновые вещества содержат в своем составе кроме углеводородной части еще кислород, серу, иногда азот. По [35, 89, 90], нефтяные смолы в концентрации до 1% стабилизируют масло, уменьшая его окисление (рис. 2.13). Увеличение концентрации смол выше 1% снижает их эффективность как естественных ингибиторов, а иногда даже повышает окисляемость масла. Предполагается, что снижение противоокислительной эффективности смол, а также их способность при высокой концентрации увеличивать окисляемость масел связаны с образованием асфальтенов. Сами асфальтены, внесенные в масло даже [c.68]

    Нефтяные смазочные масла. Нефтяные смазочные масла также способны окисляться и ири этом становятся непригодными для выполнения своего- назначения. В це.тгях предотвращения такого ухудшения свойств смазочных материалов производится тщательный отбор сырья и его переработка, а также вводятся в масла различные добавки. Процесс окисления смазочных масел и его ингибитирования согласно компеэент-ному мнению ряда авторов [29,126] во многом отличается от ранее рассмотренных процессов окисления. [c.307]

    Следует, однако, иметь в виду, что понятия смолы и асфальтены могут относиться к весьма различным продуктам. Влияние этих продуктов на окисление нефтяных углеводородов может быть также разным. Смолистые продукты ароматического характера, содержащиеся в масляных дистиллятах и в остатках и легко растворимые в феноле, будучи внесенными в масло в концентрациях 1—2%, снижают его окисляемость, т. е. являются [c.68]

    Нужно также отметить, что смолы, образующиеся в маслах в процессе их искусственного старения, весьма далеки по своему характеру от естественных нефтяных смол. Влияние этих искусственных смолистых продуктов на окисление масел также весьма различно. Смолы, представляющие собой продукты окислительной полимеризации ароматических углеводородов, обладают противоокислительными свойствами смолы, получаемые при окислении нафтено-парафиновых углеводородов, не являются ингибиторами. Смолистые продукты тормозят окисление масел [35], как правило, в тех случаях, когда в них содержатся (или образуются при их окислении) соединения фенольного типа. В какой-то мере сказанное относится и к асфальтенам. [c.69]

    Настоящий стандарт распространяется на моторные, трансформаторные, турбинные, мащинные и другие нефтяные масла с присадками и без присадок и устанавливает метод определения стабильности их против окисления в универсальном приборе. [c.19]

    Стандартный метод [345], используемый в США, применим к маслам нефтяного происхождения для использования в кабелях, трансформаторах, автоматических масляных выключателях и т. д. Масла с высокой степенью чистоты показывают то же самое значение при стандартных условиях от 30 до 35 кв. Для алканов [346] было показано, что диэлектрическая сила линейно увеличивается с плотностью жидкости. Для и-гептана было найдено соотношение между диэлектрической силой и изменением плотности с телтера-турой. Существует много причин, по которой диэлектрическая сила изолятора ослабевает самые важные, по-видимому, связаны с присутствием определенных примесей [347], полученных в результате коррозии, окисления, термического или электрического крекинга или газообразного разряда попадание воды является общеизвестной причиной аварий. [c.206]

    Нефтяные кислоты как природного происхождения, так и образующиеся в топливах и маслах при окислении, могут вызывать коррозию цветных металлов и, в незначительной степени, коррозию стальных, чугунных, алюминиевых деталей гоплпвно-масляных систем двигателей. [c.258]

    КОНОПЛЯНОЕ МАСЛО, см. Растительные масла. КОНСЕРВАЦИбННЫЕ МАСЛА, нефтяные масла с антикорроз. присадками (1-3% по массе), предназначенные для предотвращения коррозии внутр. полостей разл. механизмов (цилиндров двигателей внутр. сгорания и компрессоров, редукторов, масляных и топливных систем, узлов подшипников и др.) при их длит, консервации. К.м. применяют также для наружной консервации металлич. изделий, защищенных от прямого контакта с атмосферой упаковкой, чехлами, кожухами и др. В качестве присадок наиб, распространены сульфонаты Ва или Са, окисленные петролатум, нитрованные нефтяные масла. Разновидность К.м.-т. наз. рабоче-консервационные масла, получаемые добавлением спец. присадок (20-25%) в рабочие, или стандартные, масла (газотурбинные, моторные, трансмиссионные) при эксплуатации механизмов. Использование этих масел обеспечивает работу, консервацию и послед, ввод в действие механизмов без расконсервации с заменой на рабочие масла только при очередной полной смене. [c.454]

    При 260° устойчивость масла к окислению при всех типах присадок уменьшается до одного часа и менее. Интенвнв-ное окисление нефтяных жидкостей при высоких температурах приводит к [c.81]

    По Всем показателям полиолефиновое масло превосходит по стабильности остальные масла. Вязкость диэфирного масла после окисления увеличилась незначительно, но в нем содержалось большое количество осадка. Сверхочишенное нефтяное масло имело более высокую устойчивость к окислению, чем обычное нефтяное трансмиссионное масло. [c.95]

    С процессом окисления также связан процесс самовоспламенения высокопагретых нефтепродуктов. Если, например, из последнего масляного куба выпустить в воздух масляный гудрон с температурой, отвечающей этому кубу при перегонке, то гудрон самовоспламенится. Самовоспламенение со взрывом может также произойти при впуске воздуха в перегонный куб, в котором находится горячее масло или горячие масляные пары. Теория воспламенения основана на том, что мрлекула кислорода присоединяется к углеводороду, причем получается соединение не окис-ного, а перекисного характера. Образовавшиеся перекиси авто-катализируют процессы окисления, благодаря чему нефтяные углеводороды достигают температуры воспламенения [ ]. [c.91]

    Продувкой нефтяные остатки можно превращать в асфальт с высокой температурой плавления и вязкостью и хорошей тягучестью. В одном из процессов шздух, водяной пар или тот и другой вм-есте вводятся под высоким давлением в перегонный куб через ряд трубок, доходящих до дна. Трубки устроены таким образом, что в кубе получается двойное циркуляционное движение остатка. 0браз1ующиеоя легколетучие продукты уводятся через крышку. Сконденсировавшиеся пары мО Гут быть возвращены в масло, подвергающееся окислению Остатки от крекированных погонов окисляются продувкой воздуха или водяного пара под уменьшенным давлением при 300° "i. Bauer и Urmann сообщают, что если горячие п-родукты обработать тотчас же после окисления перегретым водяным паром или индиферентным газом, то качество продуктов улучшается. [c.910]

    Частично окисленный парафин или смесь из нефти с другими парафинами (также частично окисленными) были предложены как ингредиенты >для клея, применяемого при проклейке бумаги (Ellis i). В случае проклейки дешевых сортов бумаги, для которых цвет несущественен, продутые или окисленные воска могут быть смешаны с различными нефтяными погонами. Для высоких сортов бумаги употребляется светлое масло, например Nujol или Mar ol. Клей приготовляется диспергированием масла или окисленной смеси в водной среде с помощью таких эмульгаторов, как например мыло или силикат натрия. Наряду с продутым -парафином могут быть употреблены другие клеящие вещества, например твердые смолы. [c.1068]

    Минеральные масла (нефтяные, каменноугольные и др.), как указывалось ранее, — широко распространенные инсектициды. Вместе с тем, обладая фитоциднымц свойствами, они могут применяться для уничтожения сорной растительности. Так как фитоцидное действие минеральных масел в значительной степени зависит от содержания в них ароматических соединений, легко подвергающихся фотохимическому окислению с образованием соответствующих кислот, гербицидная активность наиболее сильно выражена у каменноугольных и сланцевых масел, у зеленого нефтяного масла и в меньшей степени — у нефтяных масел, бедных ароматическими соединениями. [c.257]

    Чем больше маслянистых примесей в технических сортах парафина нефтяного или буроугольного происхождения, тем они менее пригодны для окисления. В оксидате-сырце присутствует очень много примесей, не ра1СТ1Воримых в бензине. Эти масла состоят большей частью из нафтенов, которые ХОТЯ и окисляются, но дают вязкие кислоты и темноокрашенные мыла с неприятным залахом. Таким образом, большое количество маслянистых примесей весьма нежелательно. [c.447]

    Исследование влияния сернистых соединений на окисление некоторых индивидуальных углеводородов и различных нефтяных масел показало, что противоокислительная активность сернистых соединений большей частью не столь велика. Например, добавление к цетану сульфидов и дисульфидов арильного и алкильного характера оказалось малоэффективным. В лучшем случае поглощение кислорода удавалось снизить на 20—25%, в то время как л-гидроксидифениламин, например, уменьшал поглощение кислорода цетаном в 7—10 раз. То же можно сказать и об эффективности сернистых соединений при добавлении их к нефтяным маслам [84]. [c.90]

    Применение того или иного бензина, осветительного керосина, дизельного, газотурбинного или котельного топлива обычно зави-0 от скорости и полноты окисления газообразных во время реакции сгорания. В производстве химических продуктов промышленное значение имеет прямое частичное окисление углеводородов при невысоких температурах. В то же время, для некоторых случаев использования нефтепродуктов окислительные реакции нежелательны, и прилагаются большие усилия, чтобы не допустить процессов окисления. Так например, более или менее длительные сроки эксплуатации нефтяных масел как смазочных, так и изоляционных, зависят от их антиокислительной стабильности в условиях работы при повышенных температурах. Образование шлама при эксплуатации турбинного масла в большой степени зависит от окисления углеводородов, входящих в состав данного шлама. По той же причине при хранении крекинг-бензинов увеличивается их смолосодержание, и при продолжительном использовании таких бензинов в автомобильных двигателях отлагается углеродистый осадок. [c.68]

    Некоторые соединения каждого из упомянутых классов, за исключением фтористых углеродов, обладают при одинаковой вязкости лучшими вязкостно-температурными свойствами, чем минеральные, не комнаундироваппые присадками, масла. Высокий молекулярный вес многих синтетических смазочных масел обеспечивает им большую устойчивость в отношении испарения, чем обычным некомпаундированпым нефтяным маслам той же вязкости. Сложнее обстоит дело с устойчивостью синтетических масел против окисления и термического разложения. [c.500]

    ТУ 525-54 СОЖ нефтяная, активированная окисленным петро-латумом СОНоп 11—17 2 Смешение минерального масла средней вязкости с присадкой окисленного петролатума [c.247]


Смотреть страницы где упоминается термин Масла Нефтяные окисление: [c.234]    [c.29]    [c.457]    [c.457]    [c.102]    [c.483]    [c.491]    [c.945]    [c.491]    [c.295]    [c.494]    [c.71]    [c.8]   
Химия углеводородов нефти и их производных том 1,2 (0) -- [ c.1007 , c.1010 ]




ПОИСК





Смотрите так же термины и статьи:

Масла нефтяные

Масло масла нефтяные



© 2025 chem21.info Реклама на сайте