Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

ФотоколориметрическиЙ анализ методы определения концентрации

    Фотоколориметрически можно определять концентрацию вещества методом сравнения оптических плотностей стандартного и исследуемого окрашенных растворов, методом добавок, дифференциальным методом, методом калибровочной прямой. Последний из перечисленных методов наиболее широко применяется при серийных анализах. Суть его заключается в предварительном построении калибровочной прямой по стандартным растворам известной концентрации с последующим определением концентрации исследуемого раствора с использованием этой прямой. [c.136]


    Фотоколориметрические методы, использующие сравнительно несложную аппаратуру, обеспечивают хорошую точность ( 1—2 отн.%) и широко применяются в концентрационном анализе (определение концентрации растворов). [c.7]

    Дифференциальный метод анализа используют для повышения точности спектрофотометрических и фотоколориметрических измерений при определении высоких концентраций веществ (от 10 до 100%). Сущность метода заключается в измерении светопоглощения анализируемого раствора относительно раствора сравнения, содержащего определенное количество испытуемого вещества это приводит к изменению рабочей области шкалы прибора и снижению относительной ошибки анализа до 0,5—1%. [c.40]

    Для количественного определения рения в растворах с низкой концентрацией применяли фотоколориметрический метод анализа [5]. [c.134]

    При исследовании изменений смазочного масла большое значение имеет определение концентрации в нем продуктов изнашивания. В последние годы благодаря применению спектрального анализа [29, 50] стало возможным раздельно определять в масле концентрацию продуктов изнашивания —железа, меди, алюминия и др. и таким образом получать ценную информацию о кинетике процесса по отдельным парам трения двигателей. Разработка экспресс-методов позволяет фиксировать моменты резкого нарастания скорости изнашивания, которое свидетельствует о ненормальностях в работе какой-либо из пар трения или о необходимости замены масла в двигателе вообще. Высокой чувствительностью обладает фотоколориметрической ме- [c.97]

    Существует также ряд способов оценки количества продуктов износа непосредственно в масле, когда для определения концентрации в масле соответствующих металлов проводят химический или инструментальный анализ. Инструментальные методы (в частности, колориметрический, фотоколориметрический, полярографический и спектральный) предпочтительнее, чем трудоемкие химические методы. Наибольшие преимущества имеют методы спектрального анализа, позволяющие одновременно определять содержание нескольких элементов. При использовании аналитических методов следует иметь в виду, что некоторые металлы могут попадать в масло не только как продукты износа, но и из других источников (например, в составе атмосферной пыли, в результате коррозии), поэтому содержание продуктов износа, определяемое химическим и спектральным анализами, может быть завышено. [c.17]


    Фотоколориметрический (колориметрический) метод основан на измерении интенсивности светового потока, прошедшего через окрашенный раствор. Это один из старейших методов анализа, впервые предложенный академиком Севергиным В.М. в 1775 г. для определения железа в минеральных водах. В дальнейшем он получил широкое распространение под названием колориметрического метода определения концентрации вещества в растворе путем визуального сравнения двух одноцветных и по возможности одинаковых по интенсивности окрасок [3]. [c.253]

    Представляет интерес рекомендуемый в работе [69] метод определения нефтепродуктов с фотоколориметрическим и спектрофотометрическим окончанием. При содержании нефтепродуктов в исходной воде в интервале концентраций от 0,1 до 10 мг/л определение проводят на фотоколориметре ФЭК-56, а при концентрациях от 0,02 до 1 мг/л — на спектрофотометре СФ-4А. К преимуществам этого метода следует прежде всего отнести малые пробы исходной воды (200—250 мл) и высокую чувствительность (0,02 мг/л). Существенным недостатком метода, особенно при фотоколориметрическом окончании, является его зависимость от вида определяемого нефтепродукта. При фотоколориметрическом определении необходимо строить калибровочные графики отдельно для каждого вида нефтепродукта, так как несоответствие эталона и нефтепродукта существенно искажает результаты анализа. Небольшие пробы (примерно 100 мл) воды необходимы в методе с люминесцентным окончанием с использованием хроматографической бумаги. При использовании этого метода можно определить 0,1 —1,0 мг нефтепродукта в 1 л воды. В качестве осветителей ппименяют приборы типа КП-1, УМ-2, ВПО- . [c.238]

    Фотоколориметрический метод определения малых концентраций компонентов газовой смеси является наиболее распространенным физико-химическим методом анализа газов и воздуха. [c.60]

    Пример 5. Для определения меди (II) фотоколориметрическим методом навеска образца 1,0246 г переведена в мерную колбу вместимостью 100 мл. Содержание ионов Си + в образце около 0,5%. Рассчитайте объем раствора, необходимый для анализа, так, чтобы концентрация ионов Си + в нем не превышала 50 мкг. [c.21]

    В зависимости от используемой аппаратуры в фотометрическом анализе различают фотоколориметрические и спектрофотометрические методы анализа. Фотоколориметрические мето-д ы, в которых измеряется светопоглощеиие окрашенных растворов, используют сравнительно несложную аппаратуру и прн этом обеспечивают достаточную точность измерений (А = 1-г-2 отн.%) и широко применяются в концентрационном анализе (определение концентрации растворов). В большинстве фотоколориметров монохроматизация осуществляется с помощью светофильтров. [c.329]

    Определение концентрации на фото колориметре с однимфото-элементом. В фотоколориметрическом методе анализа нашли при- [c.82]

    При анализе источников систематических погрешностей при дифференциальных фотоколориметрических определениях Р2О5, и, в частности, в методике ГОСТ 23999-80 выделяют погрешности численной аппроксимации градуировочной зависимости. Для уменьшения влияния нелинейности градуировочного графика на определение концентрации Р2О5 (с ,) рекомендуют применять для расчета метод ограничивающих растворов метод окаймления).  [c.329]

    В спектрофотометрических методах применяют более сложные приборы — спектрофотометры, позволяющие проводить анализ как окрашенных, так и бесцветных соединений по избирательному поглощению монохроматического света в видимой, ультрафиолетовой или инфракрасной областях спектра. В отличие от фотоколориметрических эти методы, кроме концентрации светопоглощающих соединений, позволяют определять их состав, прочность и оптические характеристики. Наиболее совершенные спектрофотометрические методы анализа характеризуются высокой точностью 0,1 — 0,5 отн. %. Это прежде всего относится к дифференциальной спектрофотометрии и спектрофотометрическому титрованию, применяющимся для определения веществ в широком интервале концентраций, особенно при больших содержаниях. При соответствующих условиях эти методы не уступают но точности классическим методам анализа. [c.7]

    Особо стоит вопрос о применении линейно-колористиче-ского метода для измерения сравнительно высоких концентраций 1—2 г/м и более. Общепринятый метод [2] дискретного разбавления анализируемого газа обеспечивает точное соблюдение кратности разбавления, но существенно увеличивает время проведения опыта и усложняет экспериментальную установку, неудобен необходимостью многократного оперирования сосудами с запорной жидкостью. Кроме того, при раздельном определении содержания N0 и N02 увеличение вредного времени контакта моноокиси азота с кислородом воздуха может исказить картину действительного соотношения N0 и N02 в точке отбора пробы. И, наконец, в случае появления отечественного оборудования для непрерывной регистрации N0 метод дискретного (разового) разбавления не сможет обеспечить его работу. Наиболее логичен этот метод для фотоколориметрического анализа, который сам по себе предусматривает обособление каждой пробы. [c.39]


    Более быстрый колориметрический метод определения фосфора основан на образовании фосфорнованадатомолибде-новой гетерополикислоты, окрашенной в желтый цвет [2]. Относительная ошибка фотоколориметрического метода анализа составляет 2—5%. Такая точность допустима при определении малых количеств элементов, но совершенно недостаточна при определении их высоких концентраций. [c.49]

    Результаты анализа с помощью нефелометрического и турбидимет-рического методов в большей мере, чем при фотоколориметрическом методе, зависят от степени загрязнений оптических стекол. Поэтому здесь еще более важно защищать их или компенсировать и исключать погрешности измерений, возникшие от загрязнения и запотевания стекол. В качестве примера можно привести разработанный при участии автора книги способ определения концентраций твердых, каплеобразных и туманообразных компонентов в газовой фазе, при применении которого указанные погрешности исключены (рис. 40). [c.100]

    Описана методика [278] анализа серы и кобальта в нефтепродуктах с использованием радиоизотопного источника излучения Фт/А . В [279] обсуждены проблемы прямого определения никеля в нефти. Использован спектрометр со смешанной оптикой фирмы Силине № 52 360 с кристаллом ЫР и Ш-труб-кой (55 кВ, 40 мА). Определение никеля проводили по линии никеля /Са, а в качестве внутреннего стандарта применяли непрерывный спектр вблизи этой линии. Образцами сравнения для градуировки аппаратуры служили нефти, в которых содержание никеля было установлено фотоколориметрическим методом. Интервал определяемых концентраций никеля в нефти составил от 2-10 до 10 %. Содержания серы, водорода и углерода в пробах нефти сушественно влияют на определение никеля. При анализе нефтей с малоизменяющимся составом перечисленных элементов это влияние легко учитывается. В топливном мазуте и нефти обнаружены ванадий, никель, железо, цинк, молибден, мышьяк и селен методом РФА с дисперсией по энергии. Для простоты проведения анализа употребляли микромишени (диаметром 3—4 мм), в которые вводили исследуемый образец и растворы хрома и родия в качестве стандартных элементов. При анализе маловязких образцов можно использовать метод добавки одного элемента [280]. [c.70]

    Относительная ошибка определения концентрации этим методом уменьшается с увеличением концентрации С , раствора сравнения и получается наименьшей, когда светопоглощение или оптическая плотность исследуемого раствора и раствора сравнения одинаковы Сх = q). Практически концентрацию раствора сравнения выбирают так, чтобы значения оптической плотности, отвечающие разности концентраций исследуемого и нулевого растворов, лежали в оптимальной области измерений, т. е. от 0,3 до 0,7 Dom = 0,43) . Следует отметить, однако, что в фотоколориметрическом анализе увеличение концентрации С нулевого раствора не всегда приводит к повышению точности определения, главным образом, из-за возникающих отклонений от закона Бера (вследствие немонохроматич-ности поглощаемого света). Поэтому оптимальная концентрация нулевого раствора в каждом конкретном случае должна подбираться в зависимости от условий анализа и обеспечивать прохождение через окрашенный раствор достаточного количества света, для того чтобы можно было произвести установку гальванометра на пуль. Дифференциальный метод, в зависимости от способов измерения относительной оптической плотности исследуемого раствора и расчета его концентрации, может иметь несколько вариантов. [c.79]

    Б. После работ С. В. Волкова [39] и В. К. Земеля [45] вплоть до настоящего времени в анализе минерального сырья наибольшее распространение получили колориметрические методы определения Зе и Те, основанные на сравнении интенсивности окрасок или на измерении величин светопоглощения коллоидных растворов этих элементов. Существуют (кроме указанных выше) хорошо изученные методы, обеспечивающие достаточные для практических целей точность и воспроизводимость анализа. Общеизвестна пропись Файнберга [66], по которой можно колориметрировать визуально от 0,05 до 0,50 мг. 5е или Те в объеме 100 мл после восстановления хлоридом олова (II) для этого же восстановителя Р. Джонсон [81] дает ход анализа, скомбинироваяный из методов Волкова, Земеля и Кроссли [73], с фотоколориметрическим окончанием, предложенным у нас еще А. С. Шаховым [67]. Описаны также методы фотоколориметрического определения с применением для восстановления Зе гидрата гидразина [76], а для Те фосфорноватистой кислоты [82] в последнем методе весьма сильное влияние на оптические свойства золей оказывает концентрация восстановителя. [c.284]

    Применяемые в настоящее время оптические методы седиментационного анализа основаны на фотоколори-метрическом способе измерения количества оседающих частиц соответствующих размеров. При этом методе сравнивают яркость двух пучков света, один из которых проходит через эталонную кювету с чистым маслом, а второй — через кювету с анализируемым маслом. Измерения яркости проводят в кювете на определенном уровне в течение времени, соответствующего полному оседанию частиц. Фотоколориметрический способ применим в довольно узких пределах, так как при концентрации загрязнений менее 0,01% (масс.) погрешность метода возрастает ввиду малой оптической плотности суспензии, алри концентрации загрязнений свыше 0,1% (масс.) в анализируемом масле наблюдается явление коагуляции, искажающее результаты измерений. [c.30]

    Химический состав содержащихся в масле твердых загрязнений можно определять лабораторными методами количественного анализа и инструментальными методами. Обычно химические элементы, входящие в состав загрязнений, имеют небольшую концентрацию, что затрудняет применение, например, метода титрования. Для определения в масле содержания железа практическое применение находят главным образом колориметрический или фотоколориметрический методы. Эти методы основаны на способности водных растворов солей железа при реакции с сульфосалициловой кислотой давать окрашенные растворы, имеющие разную оптическую плотность в зависимости от содержания в них железа. [c.34]

    ФК- и ФЛ-методы анализа газов применимы только для определения субмикро- п микроконцентраций, поскольку чувствительность методов резко падает с переходом к концентрациям порядка нескольких объемных процентов и выше. Метод практически избирательный, поскольку для значительного числа определяемых газов и паров при известном составе неопределяемых компонентов смеси могут быть подобраны специфические цветные реакции. Номенклатура газов и паров, определяемых этими методами, исключительно широка и в этом смысле ФК- и ФЛ-методы принадлежат к наиболее универсальным они применимы также и для контроля весьма малых концентраций многих аэрозолей. Для очень малых концентраций приходится накапливать сигналы. Вследствие своей инерционности фотоколориметрические и фотометрические методы непригодны для контроля быстро изменяющихся концентраций. [c.609]

    Анализ в жидкой фазе широко применяется для определения микроконцентраций вредных газов и паров в воздухе. Он состоит в поглощении жидкостью исследуемого компонента анализируемой газовой смеси с последующим установлением его концентрации в растворе кондуктометрическим, полярографическим, кулойометрическим, Tep-мосорбционным, потенциометрическим, фотоколориметрическим, тур-бидиметрическим или нефелометрическим методами. Точность измерений при анализе в жидкой фазе зависит от стабильности поглощения определяемого компонента жидкостью и от постоянства соотношения газ — жидкость. [c.120]


Смотреть страницы где упоминается термин ФотоколориметрическиЙ анализ методы определения концентрации: [c.63]    [c.317]    [c.278]    [c.4]    [c.317]   
Практическое руководство (1976) -- [ c.107 ]




ПОИСК





Смотрите так же термины и статьи:

Анализ определение

Анализ фотоколориметрический

Концентрация методы определения

Концентрация определение

Методы анализа Фотоколориметрические методы анализа

Фотоколориметрический метод



© 2025 chem21.info Реклама на сайте