Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Кровь азота

    К числу наиболее важных природных хелатирующих агентов относятся производные порфина, молекула которого схематически изображена на рис. 23.6. Порфин может образовывать координационные связи с ионом металла, роль доноров при этом выполняют четыре атома азота. При комплексообразовании с металлом происходит замещение двух указанных на рисунке протонов, которые связаны с атомами азота. Комплексы, полученные с участием производных порфина, называк тся шорфи-ринами. Различные порфирины отличаются друг от друга входящими в них металлами и фуппами заместителей, присоединенными к атомам углерода на периферии лиганда. Двумя важнейшими порфиринами являются гем, который содержит атом желе-за(П), и хлорофилл, который содержит атом магния(П). О свойствах гема мы уже говорили в разд. 10.5, ч. 1. Молекула гемоглобина-переносчика кислорода в крови (рис. 10.10)-содержит четыре гемовые структурные единицы. В геме четыре атома азота порфиринового лиганда, а также атом азота, который принадлежит бе1сковой структуре молекулы гемоглобина, координированы атомом железа, который может координировать еще молекулу кислорода (в красной форме гемоглобина, называемой оксигемоглобином) либо молекулу воды (в синей форме гемоглобина, называемой де-зоксигемоглобином). Схематическое изображение оксигемоглобина дано на рис. 23.7. Как отмечалось в разд. 10.5, ч. 1, некоторые группы, например СО, действуют на гемоглобин как яды, поскольку они образуют с железом более прочные связи, чем О2. [c.376]


    После того как вы съели какой-нибудь белок, ферменты, называемые протеазами, разрывают пептидные связи. Происходит это в желудке и тонком кишечнике. Свободные аминокислоты переносятся током крови сначала в печень, а потом во все клетки. Там из них синтезируются новые белки, необходимые организму. Если в организм поступило белка больше, чем надо, или организму требуется сжечь белки из-за недостатка углеводов, то эти реакции аминокислот происходят в печени здесь азот из аминокислот образует мочевину, выделяемую из организма с мочой через мочевыводящую систему. Именно поэтому белковое питание дает лишнюю нагрузку на печень и почки. Оставшаяся часть молекулы аминокислоты либо перерабатывается в глюкозу и окисляется, либо превращается в жировые запасы. [c.262]

    Летчики вдыхают кислород также перед высотными полетами, чтобы изгнать растворенный в крови азот. [c.219]

    АЗОТ ОСТАТОЧНЫЙ — азот веществ, остающихся в крови или в экстрактах тканей человека после осаждения белков. Повышение содержания А. о. в крови наблюдается при заболеваниях почек, печени, злокачественных опухолях, туберкулезе и т. д. А. о. определяют методами химического анализа крови. [c.10]

    Для практики существенно, что растворимость этих газов в жидком железе значительно выше, чем в твердом, и поэтому при кристаллизации жидкой стали могут возникать дефекты из-за присутствия газовых пузырей. Растворимость газов в металлах заметно зависит от концентрации других элементов. Так, присутствие углерода уменьшает растворимость азота в жидком железе, а ванадий значительно увеличивает ее. Влияние третьего компонента на растворимость газов впервые было установлено И. М. Сеченовым, изучавшим поглощение углекислого газа кровью. Им было найдено уравнение [c.91]

    Прошло немного времени, и гелий стал необходимостью для ряда отраслей народного хозяйства. Проведенные в 1925 г. опыты над животными показали, что смесь кислорода с гелием пригодна для дыхания. И тогда возникла идея применять кислородно-гелиевую смесь для дыхания водолазов и кессонных рабочих, опускающихся на большие глубины. В крови работающих под водой при повышенном давлении растворяется азота больше обычного. При быстром подъеме и снижении давления растворенный в крови азот активно выделяется и закупоривает кровеносные сосуды, вызывая потерю сознания и даже смертельный исход (кессонная болезнь). При дыхании кислородно-гелиевой смесью не требуется длительной декомпрессии, так как растворимость гелия в крови значительно ниже, чем азота, и не отражается на здоровье человека. [c.143]


    Больная А. 68 лет поступила в стационар с жалобами на одышку, возникающую при небольшой физической нагрузке, сердцебиение, отёк ног, общую слабость. Считает себя больной в течение 6 лет, состояние прогрессивно ухудшается. В анамнезе частые пневмонии, заболевание почек (точную продолжительность заболевания больная указать не может). При обследовании дыхание жёсткое, сухие рассеянные пневмо-склеротические хрипы. ЧСС 100 в минуту, ритм правильный, АД 150/90 мм рт ст. Живот мягкий, безболезненный. Печень на 2-3 см выступает из-под края рёберной дуги. Отёки голеней и стоп. При биохимическом исследовании крови азот мочевины 40 мг% Больной назначен дигоксин 0,75 мг/сут. На 4-й день приёма у больной появились резкая слабость, тошнота, ощущение перебоев в работе сердца. На ЭКГ обнаружена политопная экстрасистол и я. Концентрация дигоксина в сыворотке крови 2,2 нг/мл. С чем связано повышение концентрации препарата в организме  [c.26]

    В крови работающих под водой при повышенном давлении растворяется азота больше обычного. При быстром подъеме и снижении давления растворенный в крови азот активно выделяется и закупоривает кровеносные сосуды, вызывая потерю сознания или даже смертельный исход (кессонная болезнь). При дыхании кислородно-гелиевой смесью не требуется длительной декомпрессии, так как растворимость гелия в крови значи- [c.176]

    Водолазы, однако, хорошо знакомы с кессонной болезнью , возникающей, если человек, погрузившийся глубоко под воду, слишком быстро поднимается наверх. Азот, растворенный в крови, при этом выделяется в виде пузырьков. Таким образом, вещества, на первый взгляд совершенно безвредные, такие, как азот, могут при определенных условиях стать опасными и для человека. [c.98]

    Как мы уже указывали, Лавуазье и Берцелиус впервые установили, что при построении органической материи важнейшую роль играют элементы углерод, водород, кислород и азот. Поэтому их иногда называют органогенными элементами. Однако в природных органических соединениях могут встречаться также и другие элементы так, например, во многих видах белка содержится сера в лецитинах и фосфатидах (составных частях клеточного ядра и нервной ткани)—фосфор, в гемоглобине — железо, в хлорофилле — магний, в синей крови артроподов и некоторых моллюсков — комплексно связанная медь. [c.4]

    Проявление закона Генри иллюстрируется образованием обильной пены при откупоривании бутылки газированной воды здесь происходит резкое уменьшение растворимости газа (в основном диоксида углерода) при понижении его парциального давления. Этот же закон объясняет возникновение кесонной болезни. На глубине около 40 м ниже уровня моря общее давление составляет около 600 кПа и растворимость азота в плазме крови на этой глубине в 9 раз больше, чем на поверхности моря. При быстром подъеме водолаза с глубины растворенный азот выделяется в кровь пузырьками, что может привести к тяжелым последствиям и даже к смерти. [c.171]

    Гелий также находит применение при получении искусственного воздуха для медицинских целей. Так как растворимость гелия в крови значительно меньше, чем азота, то работа с искусственным воздухом , где азот заменен гелием, дает возможность проводить водолазные и другие работы, ведущиеся при повышенном давлении, без ущерба для здоровья человека. [c.162]

    Жидкий гелий применяется для получения сверхнизких температур в криогенной технике. В последние годы для криогенной электроники стали применять более дешевый жидкий неон. Хотя создаваемая им температура выше, чем у гелия, неон менее летуч и удобнее в обращении. В смеси с кислородом гелий применяется в водолазном деле. В дыхательных смесях гелий замещает азот и предотвращает кессонную болезнь, поскольку в отличие от азота он хуже растворим в крови при повышенном давлении. Легкость и негорючесть гелия обусловили его применение для наполнения дирижаблей, аэростатов, шаров-зондов. [c.398]

    Сжиженные газы находят большое промышлен- ное применение. Жидкий диоксид углерода СО2 широко используют для газирования фруктовых и минеральных вод, приготовления шипучих вин. Жидкий диоксид серы ЗОа служит как дезинфицирующее средство для уничтожения плесневых грибков в подвалах, погребах, винных бочках, бродильных чанах. Жидкий азот широко применяют в медицине и биологии для получения низких температур при консервировании замораживанием крови и биологических тканей. [c.15]

    Смесь кислорода и гелия подают вместо воздуха водолазам. При использовании воздуха азот под давлением растворяется в крови, а при подъеме на поверхность выделяется из крови, вызывая болезненные спазмы, называемые кессонной болезнью . [c.368]

    Недавно установлено, что нитроэфиры являются лишь пролекарствами, которые легко превращаются в организме в нитрат-анионы, восстанавливаемые затем гемоглобином крови и железосодержащими ферментами в монооксид азота (N0)  [c.30]

    Представители глюкокортикоидов способствуют накоплению гликогена в печени, повышают содержание сахара в крови, вызывают увеличение выделения азота с мочой, обладают противовоспалительным действием. [c.615]


    Оксид углерода (II) взаимодействует с гемоглобином крови в-200 раз активнее кислорода и снижает способность крови быть его переносчиком. Поэтому даже при незначительных концентрациях СО в воздухе, он оказывает вредное воздействие на здоровье (вызывает головную боль, снижает умственную деятельность). Оксид серы (IV) вызывает спазмы дыхательных путчей, а оксиды азота — общую слабость, головокружение, тошноту. [c.719]

    Большое значение имеет комплексообразование железа с биолигандами [2, с. 165—184]. Особенно важен гемоглобин — железосодержащая белковая молекула, выполняющая в крови животных и человека функции переносчика кислорода. Гемоглобин содержит белок глобин и четыре гема , представляющих собой порфириновый комплекс железа (II), где атом железа образует связь с четырьмя атомами азота порфиринового кольца и одну связь с атомом азота гистидина— аминокислоты, входящей в состав б1елка глобина. Шестое место в координационной сфере железа (II) может быть занято молекулярным кислородом О2, а также лигандами типа СО, СЫ и др. Если гемоглобин вступил во взаимодействие, например, с СО, он теряет способность обратимо присоединять О2. В таком случае организм погибает от гипоксии. Этим объясняется высокая токсичность СО, СК - и подобных им лигандов. [c.134]

    Большое значение при некоторых заболеваниях имеет определение остаточного азота. Под остаточным азотом подразумевается азот всех небелковых азотистых веществ крови (азот мочевины, мочевой кислоты, креа тина, креатинина, индикана и т. д.). Для определения остаточного азота надо осадить белки и отделить от них фильтрованием небелковые части, [c.233]

    Полипептиды и аминокислоты. Содержание полипептидов в плазме крови невелико, достигая 0,5—1 мг %. Значительно выше содержаине в плазме крови азота аминокислот в среднем 5—6 мг% в крови, взятой натощак во время переваривания белков в кишечнике оно увеличивается. Применение метода хроматографического разделения аминокислот позволило более подробно разобраться в содержании отдельных аминокислот в составе плазмы кровн. Оказалось, что содержание отдельных аминокислот в плазме крови неодинаково. [c.512]

    Выпадение кислотных дождей отрицательно отражается на здоровье людей, в первую очередь они сильно влияют на дыхательную систему. Попадая в легкие, диоксиды серы и азота растворяются в крови и распространяются по кровеносной системе. Диоксид серы вызывает бронхиоспазм, активизирует слизеотделение основная его детоксикация протекает в печени под действием ферментов. Диоксид азота, будучи сильным окислителем, способен непосредственно поражать легочные ткани. [c.24]

    Кроме мэра Чиско в пресс-конференции участвовал д-р Гарольд Шмидт из лаборатории защиты окружающей среды. Д-р Шмидт пояснил, что болезнь вызвана избытком растворенного в воде воздуха. Избыток растворенного воздуха, главным образом состоящего из кислорода и азота, проходит через жабры рыб и приводит к образованию газовых пузырьков. Вследствие этого в кровь рыбы попадает меньше кислорода. Если так продолжается в течеь1ие нескольких дней, то рыба погибает . [c.92]

    В организме человека 99% всех атомов металлов составляют На, К, Mg и Са. Эти метскллы являются важнейшими фгосторами для развития растительного и животного оргализма. В отличие от натрия, калий в преобладающем количестве находится внутри клеток. Ион калия играет важную роль в некоторых физиологических и биохимических процессах, например, он участвует в проведении нервных импульсов. Определенная концентрация калия в крови необходима для нормальной работы сердца. В организм калий поступает главным образом с растительной пищей суточная потребность взрослого человека в нем составляет 2—3 г. Магний образует хелатное комплексное соединение с атомами азота в кольцах органического вещества — пиролла (хлорофилл). Недостаток магния в организме человека ведет к белой горячке, ознобу, судорогам, онемению конечностей. Отмечено, что у лиц, страдающих алкоголизмом, всегда имеется недостаток в организме магния. По значению радиуса к иону калия близок ион бария и поэтому последний способен замещать калий в его соединениях. В результате барий является мускульным ядом. [c.590]

    Гелий, так же как п аргон, ислоль-зуют для создания защитной атмосферы прп работе с веществами, pea гирующпмп с кислородом, азотом и другими газами. Смесь гелия с кислородом применяют для дыхания при подводных работах на большой глубине. Это связано с очень малой растворимостью Не в воде. Если же пользоваться воздухом, то при высоком давлёпии азот значительно растворяется в крови, что вызывает тяжелые последствия. [c.489]

    Фосфор, как и азот, необходим для всех живых существ, так как он входит в состав некоторых белков как растительного, так и животного происхождения. В растениях фосфор содержится главным образом в белках семян, в животных организмах — в белках молока, крови, мозговой и нервной тканей. Кроме того, большое количество фосфора содержится в костях позвоночных животных в основном в виде соединений ЗСаз(Р04)2-Са(0Н)2 и ЗСаз(Р04)2-СаС0з-Н20. В виде кислотного остатка фосфорной кислоты 4>осфор входит в состав нуклеиновых кислот — сложных органических полимерных соединений, содержащихся во всех живых организмах. Эти кислоты принимают непосредственное участие в процессах передачи наследственных свойств живой клетки. [c.442]

    Кислород образует соединения со всеми химическими элементами, кроме гелия, неона и аргона. С большинством элементов он взаимодействует непосредственно (кроме галогенов, золота и платины). Скорость взаимодействия кислорода как с простыми, так и со сложными веществами зависит от природы вещества и от температуры. Некоторые вещества, например оксид азота (II), гемоглобин крови, уже при комнатной температуре соединяются с кислородом воздуха со значительной скоростью. Многие реакщ1и окисления ускоряются катализаторами. Например, в присутствии дисперсной платины смесь водорода с кислородом воспламеняется при комнатной температуре. Характерной особенностью многих реакций соединения с кислородом является выделение теплоты и света. Такой процесс называется горением. [c.455]

    Кобальт всегда содержится в организмах растений и животных. Общеизвестна его роль в обмене веществ. Кобальт участвует в синтезе гемоглобина крови человека и животных, входит в состав антианеми-ческого витамина В12. Особенно необходим кобальт бобовым растениям, так как он содействует фиксации атмосферного азота. Недостаток его в почве и кор.мах вызывает у животных заболевание ( сухотку , или лизуху ). [c.430]

    Норадреналин, а также адреналин (в котором по сравнению с норадре-налином один атом водорода при атоме азота замещен метильной группой) обладают заметным биологическим действием, и их высокое содержание в крови приводит к повышению кровяного давления. Увеличение содержания адреналина и норадреналина в крови наблюдается в стрессовых ситуациях (несчастный случай, облучение и т.д.). Адреналин — это первый открытый гормон (в 1894 г.). Оба вещества применяются как лекарства при некоторых нарушениях кровообращения, в том числе при сердечной недостаточности. [c.311]

    У растений остов растительной клетки образует клетчатка, но и здесь белки выполняют жизненно важные функции, сосредоточиваясь в основном в семенах. Растения способны синтезировать аминокислоты и белки, используя в качестве источника азота неорганические соединения, животные же для нормального существования должны получать белки с пищей. В процессе пищеварения белки расш,енляются на амшюкислоты, которые током крови разносятся по всему организму и служат строительным материалом для создания белков животных организмов. [c.332]

    Все приведенные способы анализа требуют довольно длительной обработки, высокой чистоты реактивов и большой навески исследуемого вещества (0,02—5,0 г). Предлои ен ускоренный микрометод [14.3] определения общего азота в нефтях и нефтепродуктах, в основу которого положен метод определения осадочного азота крови в биохимических исследованиях. Выделившийся в результате разложения азот определяют титрометрически. Метод характеризуется небольшой навеской, малым временем определения и другими достоинствами. В лаборатории аналитической химии нефти ИХН СО АН СССР Л. И. Аксеновой и Т. П. Сырых этот метод модифицирован. Суть его заключается в следующем. В колбу Кьельдаля объемом 50 мл вносят 5—20 мг аиа (нзируемого вещества и прибавляют 1 —2 мл концентрированной серной кислоты, затем смесь медленно доводят до кипения, кипятят до просветления и появления красноватого оттенка. Колбу охлаждают и вносят в нее 5—8 капель 30%-ной перекиси водорода, затем снова кипятят до окончательного обесцвечивания смеси. Весь процесс длится 3 ч. После охлаждения содержимое колбы переносят в мерный стакан емкостью 100 мл, колбу споласкивают несколько раз дистиллированной водой. Затем при перемешивании в стакан последовательно вносят 30%-НЫЙ раствор NaOH до pH 7 и 4—5 капель реактива Кесслера, объем раствора доводят до 100 мл. Параллельно проводят ХОЛОСТОЙ опыт без образца. Через 4—5 мин замеряют оптическую плотность раствора на ФЭК-56М при длине волны 450 нм. Общее содержание азота рассчитывают по формуле [c.190]

    В схеме не указаны имеющиеся в молекуле боковые цепи (—СНз, —СН= СН>, —СН2СН2СООН и др.). Само 16-членное кольцо (без Ме) называется скелетом порфирина. В центре порфирина находится комплексообразователь, связанный атомами азота в гемоглобине — ион Ре , в хлорофилле — нон Mg +. Вся структура соединена с белковой частью (глобином, состоящим из четырех полипептидных цепочек), без которой ни гемоглобин, ни хлорофилл не могут осуществлять свои биохимические функции. Гем обусловливает красный цвет крови. Установлено, что у иона Ре-+ шесть координационных мест, из них четыре удерживают его в плоскости кольца, а два перпендикулярны этой плоскости, причем одно из них связывает гем с глобином, а другое—с молекулой кислорода. Гемоглобин обратимо присоединяет кислород и разносит его по кровеносной системе из легких в каждую клетку тела. [c.207]

    Мышечная ткань, % 7,2 Костная ткань, % 4,3 Кровь, мг/л данные отсутствуют Ежедневный прием с пищей дан ные отсутствуют, но доза высока Токсическая доэа некоторые соединения азота токсичны Содержание в организме среднего челояека (масса теля 70 кг) 1,8 кг [c.19]

    Четыре пиррольных кольца в гемине замещены метильными и ви-нильныии группами и остатком пропионовой кислоты. Железо связано со всеми четырьмя атомами азота нормальными и координационными связями. Гемин (геминхлорид) при гидролизе разбавленной щелочью дает не содержащий хлора гем (гидроокись гемина). Известны методы удаления и обратного введения атома железа не содержащие железа соединения, имеющие характерную систему из четырех связанных пиррольных колец, известны как порфирины, железосодержащие производные названы темами. Ключевое соединение — этиопорфирин Сз2Нз8М4 получен три разложении гемина, включающем удаление железа, декарбоксилирование и восстановление винильных групп. Этиопорфирин представляет собой тетраметилтетраэтилпорфирин. Выделение этого же соединения при разложении хлорофилла указывает на тесную структурную связь пигментов крови и листьев. [c.672]


Смотреть страницы где упоминается термин Кровь азота: [c.70]    [c.226]    [c.108]    [c.377]    [c.417]    [c.330]    [c.379]    [c.135]    [c.46]    [c.46]    [c.506]    [c.127]    [c.192]    [c.412]   
Калориметрические (фотометрические) методы определения неметаллов (1963) -- [ c.104 ]




ПОИСК







© 2025 chem21.info Реклама на сайте