Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Аргон определение гелия, кислорода

    В воздухе, как известно, содержится около 1% аргона (см. табл. 1-2). В продуктах горения концентрация аргона, вносимого в топочную камеру с воздухом, естественно, больше, чем в воздухе она зависит от коэффициента избытка воздуха и от вида сжигаемого топлива. На сигнал детектора по теплопроводности, получаемый при прохождении аргона через рабочую камеру, когда в качестве газа-носителя используется гелий), будет накладываться сигнал, возникающий от присутствия в анализируемой смеси кислорода (см. рис. 5-23). В связи с этим погрешность за счет наличия в пробе аргона при определении малых количеств кислорода в продуктах горения (до 1—2%) будет соизмерима с определяемой величиной кислорода. [c.152]


    Каннулик и Мартин I Л. 1-72], установив значительное расхождение в значениях теплопроводности газов при атмосферном давлении, применили метод нагретой проволоки для определения правильных значений теплопроводности водорода, кислорода, углекислого газа, гелия, аргон а, неона сферном давлении. Этот же метод использован П. И. Шушпановым [Л. 1-73] для исследования теплопроводности паров восьми спиртов и С. И. Грибковой [Л. 1-74] для исследования теплопроводности паров ряда эфиров, А. К. Абас-Заде [Л. 1-75] для исследования теплапроводиости в жидкой и паровой фазах ацетона, [c.87]

    Удаление углеводородов производят путем их сожжения в специально устроенной пипетке, в которой имеется платиновая спираль, накаливаемая электрическим током. В бюретку забирают определенное количество кислорода, и газовую смесь направляют в эту пипетку для сожжения. После сожжения поглощают образовавшуюся углекислоту и не вошедший в реакцию кислород. Остаток, измеряемый в бюретке, представляет собой азот с примесью инертных газов — гелия и аргона. [c.222]

    В зависимости от сплава и определяемого элемента применяют подставные электроды—медные, угольные или вольфрамовые. Оба электрода помещают в специальную камеру, из которой перед включением генератора откачивают воздух до давления 10 мм рт. ст. и наполняют ее каким-либо инертным газом или СО3 под давлением в несколько сотен миллиметров ртутного столба. Когда для определения газов применяют дугу, проба является анодом, ее плавят в специальной камере в атмосфере аргона или гелия. Второй электрод—угольный. Условия подбирают так, чтобы кислород или азот металла переходили в летучее [c.235]

    Анализаторы типа ГЛ (рис. VII-14), разработанные СКБ аналитического приборостроения АН СССР, также оборудованы электрохимической системой гальванического типа [17]. Они используются для определения концентрации кислорода в азоте, гелии, аргоне, водороде, этилене, пропилене и других газах, не содержащих механических и агрессивных примесей. Например, в анализаторе типа ГЛ 5108 анализируемая газовая смесь [c.107]

    Вместо пористого носителя с успехом используются т акже свернутые в компактные мотки капиллярные трубки диаметром около 0,1 ллг и до 1 км длиной. Это могут быть стеклянные, стальные, медные, алюминиевые, нейлоновые трубки. Их наполняют раствором будущего неподвижного растворителя, например, вазелинового масла, в какой-нибудь подходящей летучей жидкости, например в эфире. Последний потом испаряется при нагревании трубки, оставляя на ее поверхности слой неподвижной фазы , толщиной в несколько десятых долей микрона. Для анализа берут пробы, содержащие не больше нескольких микрограмм исследуемых веществ. Эти пробы вводятся в поток газа-носителя в капилляре. Газом-носителем часто служат азот, аргон, гелий. При контакте паро-газовой смеси с пленкой жидкости, покрывающей стенки капилляра, происходит процесс распределения между газом и жидкостью и анализируемые вещества в капилляре разделяются. По выходе из капилляра они попадают в анализатор, например ионизационный детектор, где имеется несколько милликюри радиоактивного вещества, излучающего р-частицы. Внутри детектора находятся электроды под напряжением в несколько сот вольт. В этих условиях происходит ионизация молекул анализируемых веществ и между электродами протекает ток, по силе которого измеряют количество проходящих через детектор веществ. Особенно хорошие результаты получаются при применении в качестве газа-носителя аргона или гелия. Атомы этих газов при радиоактивном облучении переходят в возбужденное состояние, а возбужденные атомы вызывают ионизацию молекул анализируемых веществ, если энергия их ионизации меньше энергии возбуждения атома. Благодаря этому аргоновым детектором можно измерять концентрацию кислорода, азота, паров воды и углекислого газа и многих других газов. Гелиевый детектор позволяет определять азот, кислород, водород. Чувствительность определения достигает 10" %. Очень удобен пламенно-ионизационный детектор, хотя он несколько менее чувствителен, чем ионизационный. В нем сжигают водород, пламя которого почти не ионизовано. Но, если в это пламя попадают примеси [c.300]


    Однако, как показало определение концентрации кислорода в газовых смесях, в которых отношение аргон—азот постоянно и равно отношению в нормальном атмосферном воздухе [2], истинное содержание кислорода может быть найдено и при использовании в качестве газа-носителя гелия, водорода и азота. [c.113]

    Неуглеводородные компоненты, такие как водород, кислород, азот, окись углерода и низкокипящие углеводороды, метан и этан, анализируются на приборе ХЛ-3 при заполнении колонки молекулярными ситами СаА или КаХ п])и следующих условиях длина колонки 1 м, внутренний диаметр 6 мм, температура термостатирования детектора 40° С [2]. При наличии водорода в газовой смеси в качестве газа-носителя применяется аргон для смесей, не содержащих водорода, последний служит газом-носителем. При достаточно большем содержании Водорода в смеси (от 20% и более) целесообразно в качестве газа-носителя применять гелий, который дает возможность определения всех перечисленных компонентов за один цикл анализа. Следует отметить, что выбор газа-носителя в большей степени зависит от соотношения концентраций компонентов, [c.162]

    Для определения кислорода (совместно с аргоном) и азота в качестве газа-носителя используют гелий, а для определения гелия и водорода - аргон или азот. [c.20]

    Прн исследовании в ультрафиолетовом свете распада перекиси водорода над платиной наблюдаются электронные потоки от более активных к менее активным частям поверхности. Хорошей иллюстрацией неоднородности поверхности является также десорбция кислорода с активированного угля. Оказывается, что небольшую часть кислорода можно десорбировать простым откачиванием в высоком вакууме значительная часть кислорода удаляется в виде Oj, тогда как в вакууме при нагревании десорбируется смесь O-f +С0.2. Эти явления показывают, что поверхность угля неравноценна и на ней существует по меньшей мере три типа различных участков, удерживающих кислород с неодинаковой прочностью. Наконец, сложность поверхности катализаторов очевидна и из факта существования определенной сорбционной емкости, т. е. способности одной и той же поверхности адсорбировать различные количества газов. Так, например, 1 см угля может адсорбировать 0,227 м.г гелия, 1,67 мл аргона, 2,35 мл азота, 2,5 мл кислорода, 3,5 мл окиси [c.108]

    Для прокаливания или нагревания веществ в окислительной, инертной или восстановительной атмосфере применяются трубчатые или другие печи, через которые во время работы пропускают соответствующий газ. Для создания окислительной атмосферы, как правило, используется кислород. Инертную среду обычно создают, используя аргон, азот, реже — гелий. Водород или оксид углерода (II) применяют для создания восстановительной атмосферы. Однако при создании определенной атмосферы следует остерегаться, чтобы газы не взаимодействовали при высоких температурах с исследуемым веществом. [c.17]

    В промышленности азот получают разгонкой жидкого воздуха в ректификационных колоннах. В качестве ценных побочных продуктов при этом получаются кислород и аргон, а при определенных условиях, кроме того, еще неон и гелий. [c.130]

    Хроматограф Луч . Лабораторный газовый малогабаритный универсальный хроматограф. Предназначается для определения примесей, адсорбирующихся слабее основных компонентов. Определяют микропримеси гелия, неона, водорода в атмосферном воздухе кислорода, оксида углерода в чистом этилене водорода в аргоне и др. Минимальная определяемая концентрация примесей легких газов составляет Ы0 % (объемн.). Объем анализируемой пробы от 100 до 1000 мл. Максимальная температура колонки 200 °С, испарителя — до 250 °С, точность термостатирования 2°С. [c.206]

    Отбор проб для определения углеводородов, азота, кислорода, водорода, гелия, аргона и двуокиси углерода из системы с Давлением газа выше атмосферного и точкой росы воды ниже температуры газа производят в контейнеры или баллоны способом су.хой продувки и заполняют их до давления, равного давлению в точке отбора. [c.123]

    С), где С — количество вещества в единице объема стандартного раствора или газа. После разделения вещество определяют любыми хим., физико-хим. или физ. методами. Различают X. а. газов и жидкостей. Кроме того, в зависимости от механизма разделения X. а. бывает молекулярный (адсорбционный и распределительный), ионообменный, осадочный, адсорбционно-комплексообразовательный, окислительно-восстановительный по форме проведения анализа — колоночный, капиллярный, на бумаге, тонкослойный и в гелях. Г азо-адсорбцион-н ы й X. а. основан на различной адсорбции компонентов газовой смеси твердым сорбентом (активированным углем, силикагелем, цеолитами и др.). Для продвижения пробы через колонку служит инертный газ-носитель (напр., азот, гелий, аргон). Анализ применяется для количественного определения кислорода, азота, водорода, окиси и двуокиси углерода, сернистого газа и др. В газожидкостном X. а. применяют установки (рис.), где используют различие в распределении анализируемых газообразных соединений между неподвижной жидкой фазой (нанр., силиконовым или вазелиновым маслом, дибутилфталатом), нанесенной на твердый сорбент, и газом-носителем, не взаимодействующим химически с жидкой фазой и с компонентами анализируемой смеси. При капиллярном газожидкостном [c.696]


Рис. 82. Градуировочные кривые д.чя определения кислорода (а) и аргона (6) в воздухе без разбавления смеси гелием. Рис. 82. <a href="/info/649087">Градуировочные кривые</a> д.чя <a href="/info/80550">определения кислорода</a> (а) и аргона (6) в воздухе без <a href="/info/974954">разбавления смеси</a> гелием.
    В очень больших количествах в настоящее время получение азота в технике производят сжижением и фракционированной перегонкой воздуха В качестве ценных побочных продуктов при этом получаются кислород и аргон, а при определенных условиях, кроме того, еще неон и гелий. [c.634]

    В настоящей работе описываются опыты по определению адсорбции газовых ионов на металлических и стеклянных поверхностях. Работа ограничивается почти исключительно ионами инертных газов—гелия, неона, аргона и криптона. Было проведено лишь небольшое количество опытов с азотом и кислородом. Применяемый метод состоит скорее в определении десорбционных свойств, чем адсорбционных после сорбции на поверхности мишени прп бомбардировке ее попами удаляли газ нагреванием. Система непрерывно откачивалась количество выделяющегося газа определяли интегрированием давления по времени. Преимущество этого метода но сравнению с методом работы в замкнутой системе состоит в том, что сорбция может быть проведена в простых и легко контролируемых условиях при постоянном и низком фоновом давлении. Однако такой метод не позволял провести точного сравнения количеств выделившегося [c.534]

    В Советском Союзе в баллонах поставляются во5оро5, азот, аргон, гелий, кислород, хлор, аммиак, ацетилен, смесь пропана с бутаном, закись азота, фосген, х.гористый метилен и ряд других газов. Баллоны с наиболее употребительными газами окрашены в определенные цвета или маркированы цветными полосами. Кроме того, некоторые баллоны различаются по типу резьбы запорного вентиля. Так, в отличие от всех других баллонов баллоны с водородом, этиленом, пропаном и некоторыми другими горючими газами имеют левую резьбу запирающих вентилей. Помимо разницы в резьбе, некоторые баллоны различаются и по способу крепления вентилей тонкой регулировки. Так, например, редукторы для ацетиленовых баллонов приворачиваются при помощи специальных узлов. [c.620]

    В угольной дуге, особенно в дуге постоянного тока, появляется значительный фон за счет молекулярных полос СН, маскирующих часть УФ-спектра в области 4200—3500 А. Для подавления фона в указанной области предложено вокруг столба дуги создавать атмосферу из других газов, например гелия, углекислоты, смеси аргона с кислородом. Благодаря удалению азота из зоны горения дуги и обдуванию дуги другим газом полосы циана подавляются. При этом повышается чувствительность определения некоторых элементов (Оа —4172,1 К —4044 РЬ —4057 Те — 3775 МЬ — 4058 А и др.). [c.51]

    Кроме сказанного, в литературе описан также ряд полезных в практическом отношении наблюдений. Они состоят в следующем. Аргон в качестве защитного газа целесообразно использовать при анализе алюминиевой стружки [31]. При определении кислорода в металлах с высокой температурой плавления в качестве защитного газа предложен гелий или смесь гелия с азотом при пониженном давлении. В этом случае противоэлектрод делают из алюминия или меди [32]. Анализ нержавеющих сталей целесообразно проводить в мощном потоке кислорода, в котором уменьшается матричный эффект [33]. При анализе алюминия использование водорода в качестве защитного газа приводит к усилению линий магния и цинка и ослаблению линий железа, кремния и ванадия [34]. Сообщалось также, что защитный газ способствует повышению стабильности дуги [35, 36]. [c.259]

    На базе электрохимического метода разработана серия приборов Оникс — для определения кислорода, водорода и паров воды в азоте и инертных газах в диапазоне 210 -5-10 мол. % Циркон — для определения кислорода в инертных газах и азоте в диапазоне от 10 до 100 мол. % Агат — для определения кислорода от 5-10 до ЮОмол. % Топаз — для определения кислорода в диапазоне 15 5 мол. % Лазурит — для оиределения кислорода и водорода в инертных газах и азоте в диапазоне от 10 " до 10 мол. %. Создана серия портативных газосигнализаторов с использованием в качестве датчиков электрохимических сенсоров ИВГ-1 — для измерения микровлажности в азоте, аргоне, воздухе, гелии, кислороде и их смесях до 5-10 г/м (-90 °С), ТГС-3 —для контроля содержания метана (модификация ТГС-З-МИ в диапазоне 0-3 об. %), кислорода (модификация ТГС-З-КИ в диапазоне 28-18 об. %), аммиака (модификация ТГС-З-АИ в диапазоне 2-10 -1 10 мол. %). [c.926]

    Для контроля содержания кислорода в аппаратуре применяют газосигнализатор ГГМК-12, предназначенный для определения содержания кислорода в бинарных и многокомпонентных газовых смесях. Газоанализатор представляет собой прибор непрерывного действия, его выпускают со следующими шкалами О—1, О—2, О—5, О—10, О—21% (об.) кислорода. В составе анализируемой смеси в качестве неизмеряемых компонентов могут присутствовать азот, двуокись углерода, гелий, аргон, окись углерода и непредельные углеводороды до С включительно. Датчик газоанализатора ДК-6М выполнен во взрывонепроницаемом исполнении, его можно устанавливать во взрывоопасных помещениях всех классов. [c.108]

    На своем пути в данной среде альфа-частица заданной начальной энергии образует определенное числов пар ионов (ион плюс электрон). Так, альфа-частицы радия в воздухе образуют 1,47 10" пар ионов на каждую альфа-частицу, Rn—1,67 10 пар ионов, F a —2,37 10 пар ионов, и т. д. Разделив энергию альфа-частицы на число образуемых ею пар ионов, получаем, что средняя энергия, затрачиваемая на ионизацию одной молекулы воздуха, составляет около 33 эв. Это число примерно в два раза больше потенциала ионизации молекулы азота (15,65 эв) и почти в три раза больше потенциала ионизации молекулы кислорода (12,70 эв). Объяснение этого расхождения заключается в том, что в число 33 эв входят также потери, связанные с ускорением вырываемых из молекулы электронов, с вырыванием ие только наиболее слабо связанных электронов, но и других, более прочно связанных электронов, а также с возбуждением и диссоциацией молекул газа. То, что при прохож-.вдиии аль4>а-частиц через газ, наряду с ионами, возникают также и возбужденные частицы, с особен1ЮЙ очевидностью явствует из следующих данных [709]. Исследования ионизации гелия и неона альфа-частицами полония показывают [801], что в среднем на одну пару ионов в гелии затрачивается 41,3 эв и в неоне —36,3 эв. Добавление 0,13°/о аргона к гелию приводит к снижению энергии, затрачиваемой на создание пары иоиов, до [c.456]

    Применение атмосферы аргона и кислорода дает хорошие результаты также в сочетании с дугой переменного тока. Сравнивались результаты определения ряда элементов в графите при испарении в атмосфере воздуха и смеси 75% аргона с 25% кислорода. Использовали дугу переменного тока силой 8—16 А. Пределы обнаружения бора, бериллия, германия, кальция, магния, титана и цинка в графитовой основе и бериллия, кадмия, железа, германия, марганца, ниобия и титана в основе графит-Ь -Ькарбонат лития в 2—10 раз ниже в атмосфере аргона с кислородом, чем в воздухе. В основе графит + фторид лития (3 1) пределы обнаружения бора, бериллия, германия, кадмия, марганца, ниобия и цинка в 2—5 раз ниже в атмосфере аргона с кислородом, чем в воздухе. Зато предел обнаружения олова во всех матрицах при анализе в воздухе в 5 раз ниже, чем в смеси аргона с кислородом. Точность анализа в атмосфере аргона и кислорода несколько лучше, чем в воздухе. Но не для всех элементов оптимальное соотношение аргон кислород было 75 25. Так, максимальное значение /л//ф при определении магния и хрома в графите получено в атмосфере 40% аргон-ЬбО% кислорода, а при определении хрома и железа в основе графит + -[-карбокат лития — в атмосфере чистого аргона. Таким образом, состав 75% аргона-f 25% кислорода является компромиссным. Авторами исследованы также смеси гелия с кислородом (70—100% Не+ЗО—0% Ог). При этом столкнулись со следую-шими трудностями. Большое различие в плотности гелия и кислорода затрудняет смешение их в контролируемых условиях. Кроме того, при содержании, в смеси 30% кислорода электроды горели очень интенсивно, как будто кислорода было гораздо больше. Поэтому от гелия отказались, хотя характеристики у гелия и аргона близкие [236]. [c.128]

    Описанный метод пригоден на любых сорбентах для таких химически инертных газов, как гелий, аргон, азот, водород, кислород, метан и многие другие. Что же касается других органических и неорганических газообразных веществ, обладающих активными функциональными группами, то при определении их вланшости необходимо более строго подходить к выбору сорбента. [c.148]

    При проведении апализа строят градуировочные кривые для определения аргона в гелии и проверяют отсутствие влияния добавок неона. После этого при тех же условиях разряда строят градуировочные кривые для определения концентрации неона в смеси Ке—Не ири разных концентрациях аргона. Сначала определяют концентрацию аргона по первой градуировочной кривой и фиксируют, какой из второй серии градуировочных кривых можно воспользоваться для определепия концентрации неопа [9]. Аналогичный прием был использован Е. И. Красновой и Е. Я. Шрейдер при разработке методики определения малых концентраций кислорода и азота к водороду. [c.280]

    Если при определении себестоимости аргона, криптона и гелия отнести только те затраты, которые связаны с очисткой этих газов и наполнением их в баллоны или транопортировтсой по трубопроводам, то в этом случае себестоимость кислорода не снизится. Если же условно отнести на редкие газы большие затраты, то может быть получена искуоственно заниженная себестоимость кислорода. Однако такой метод определения себестоимости кислорода является неверным. [c.301]

    Рис, 184, Градуироночпые графики д.ггя определения содержания кислорода (а) и аргона (б) в воздухе ири разбавлении смеси гелием. [c.257]

    Гелиевый детектор. Разработан для ультрамикроанализа газов. Под воздействием тритиевого источника р-излучения и высокого градиента электрического поля (более 2000 В/см) гелий, используемый в качестве газа-носителя, переходит в метастабильное состояние с определенным ионизационным потенциалом. Все соединения с более низким потенциалом ионизации при этом ионизируются и дают положительный сигнал. Гелиевый детектор дает отклик на все газы, исключая неон. Этот детектор удобен для анализа следовых примесей в высоко очищенных этилене, кислороде, аргоне, водороде, диоксиде углерода и т. д. [c.233]

    Детектор электронного захвата (ДЭЗ) успешно применяется для определения малых концентраций галоген-кислород- и азотсодержащих веществ, металл-оргаиическнх соединений ы других веществ, содержа-, щих атомы с явно выраженным сродством к электрону. В ионизационную камеру детектора помещен радиоактивный источник (тритневый или никелевый N1). В качестве газа-носителя используются азот, аргон, гелий или другие газы, способные ионизироваться, например  [c.355]

    ТО есть на поляризацию индикаторного электрода расходуется только часть налагаемого напряжения. Но при условии, что площадь поверхности анода во много раз больше, чем у катода, поляризацией анода можно пренебречь, потому что из-за малой плотности тока его потенциал будет оставаться нрактически постоянным. Если сопротивление раствора уменьшить, то слагаемым Ш можно пренебречь, потому что в полярографической ячейке редко возникают токи, сила которых выше нескольких десятков микроампер. Для снижения сопротивления в анализируемый раствор вводят избыток индифферентного электролита, или просто фона. В качестве фона пригодны различные соли щелочных и щелочноземельньк металлов, растворы кислот, щелочей, а также разнообразные буферные смеси. Нри этих условиях можно полагать, что практически все налагаемое на ячейку внешнее напряжение расходуется на изменение нотенциала индикаторного электрода, то есть в и Е . Перед регистрацией нолярограммы необходимо удалить из раствора растворенный кислород, который восстанавливается на ртутном электроде. Растворимость кислорода в разбавленньк растворах электролитов довольно высокая, около 10 " моль/л, поэтому он мешает полярографическому определению большинства веществ. Из раствора кислород можно удалить, барботируя через него какой-либо электрохимически инертный газ (азот, гелий, аргон). В этом случае ячейка должна быть достаточно герметичной, а избыток газа следует отводить через гидрозатвор. Во время регистрации нолярограммы, для того чтобы кислород воздуха не попадал в ячейку, над поверхностью раствора рекомендуется пропускать ток инертного газа. Для удаления растворенного кислорода необходимо 15-20 минут барботировать инертный газ, а при работе с низкими концентрациями вещества и в случае очень точньк измерений требуется увели- [c.165]

    Химический состоит в добавлении к раствору соответствующего восстановителя в кислой среде — аскорбиновой кислоты, в нейтральный и щелочной — сульфита натрия. Однако эти реактивы редко бывают достаточно чистыми для определения следов примесей в методе ИВ. Физический — понижение парциального давления кислорода над анализируемым раствором и как следствие — удаление О2 из раствора. Для этого чаще всего пользуются деаэрацией, т.е. пропусканием через раствор инертного газа азота, аргона, гелия, реже водорода и СО. Вак"уумирование раствора или его замораживание требуют специального оборудования и более продолжгггельны. Фотохимический — дезактивация кислорода путем фотохимической реакции с радикалами, полученными при введении в раствор фотоак-тивного вещества (фона) и облучении этого раствора УФ-светом. Электрохимический — прекращение перемешивания раствора по окончании стадии электронакопления. На стадии успокоения раствора при потенциале, близком к ,. происходит обеднение приэлектродного слоя частицами окислителя, разряжающимися на индикаторном электроде. [c.776]

    Для уничтожения избыточного фона и мешающего действия циановых полос можно пользоваться установкой, в которой воздух заменяется другими газами, например смесью аргона и кислорода 1823], чистым кислородом (ли-ни.ч 4172 Д) [974, 1423], чистым аргоном 1134, 1319], или чистым гелием [1147]. Такая замена препятствует эффекту самопоглощения и упрощает технику анализа. В результате достигнутого при этом увеличения чувствительности получены надежные данные при определении галлия в глинах и минералах с применением атмосферы воздуха и аргона 823], в силикатных горных породах с дрименением струи сжатого кислорода [974] или аргона [1319], в карбиде кремния с сжиганием проб в атмосфере аргона [1134], в сплаве 1п—Оа в атмосфере гелия (линия 4172 А) (1147]. Повышение чувствительности спектрального анализа может быть достигнуто созданием у пробы искусственной основы. [c.157]

    Качественный анализ примесей инертных газов в гелии проводился в работе Карлик р ]. Для возбуждения спектра применялся высокочастотный ламповый генератор Трубка диаметром 1 —1,5. им с внешними электродами была сделана из кварца, расстояние между электродами равнялось 3,5 см. Давление в различных опытах менялось от 0,01 до 0,1 жл рт. ст. Трубка присоединялась к установке с помощью ртутного шлифа, который давал возможность новорачивать трубку го к одному, то к другому спектрографу, так как одновременно проводилась съемка в видимой и ультрафиолетовой областях спектра. При длительном возбуждении в разряде низкого давления наблюдался эффект усталости, заключающийся в том, что разряд возникал все труднее и труднее. Эффект усталости пропадал, если в трубку впускался воздух или кислород. Перед началом работы установка тренировалась в чистом гелии. Автором составлена таблица чувствительности (в %) определения аргона, криптона, ксенона, неона в гелии для видимой и ультрафиолетовой областей спектра  [c.178]

    Чувствительность определения кислорода в аргоне ниже, чем в гелии и неоне, и не превышает сотой доли процента. Аналитической парой служит 01>.7772А—Аг 17624А. [c.187]

    На рис. 83 даны градуировочные кривые для анализа аргона и кислорода в воздухе, полученные при разбавлении исходной смеси воздуха гелием в 80-кратном размере. При определении кислорода в качестве линий сравнения могут быть использованы как линии атомар- [c.216]

    Колонка длиной 5,5 м, заполненная молекулярным ситом 13Х фирмы Linde, дает удовлетворительное разделение водорода, кислорода, азота, аргона и метана. Носителем является гелий. Концентрация водорода (примерно 60%) слишком велика для определения водорода в газе-носителе гелии. Полярность сигнала для водородного пика автоматически меняется на обратную при помощи программного устройства. Отношение водорода к азоту рассчитывают по высоте пиков, одпако сравнительно просто сконструировать приспособление для получения этого соотношения непосредственно. [c.111]

    Вследствие структурирования полипропилен, облученный в отсутствие кислорода воздуха, не растворялся в органических растворителях, поэтому количество гель-фракции оценивалось путем экстракции облученного полипропилена о-ксилолом в атмосфере аргона, а о степени деструкции полимера судили по понижению температуры плавления, определенной дифференциально-термическим (ДТА) методом. Термографирование облученного полипропилена проводили в аргоне. [c.272]

    Таким образом, аргон должно определить как особый газ, отличающийся беспримерною (до его открытия) химическою недеятельностью, но совершенно определенный по физическим свойствам, из которых должно также обратить внимание на самостоятельность спектра аргона. А так как самостоятельными спектрами обладают преимущественно (гл. 13) тела простые, то аргон принято считать в их числе, хотя главной характеристики простых тел, т.-е. самостоятельных и своеобразных соответственных соединй ний, для аргона неизвестно. Однако, можно умственно допустить и такой разряд элементов, который не соединяется ни с водородом, ни с кислородом для образования кислотных или основных веществ, так как известны многие элементы, не соединяющиеся с водородом, а фтор не соединен с кислородом, — для образования солеобразных веществ. Если же это так, то мы имеем право образовать особую группу — аргоновых элементов, причисляя к ней гелий Не, неон Не, аргон Аг, криптон Кг и ксенон Хе, не только потому, что они друг друга сопровождают при азоте воздуха и представляют полное между собою сходство—по своей инертности или неспособности вступать известными нам способами в соединения, более или менее сходные с основаниями, кислотами или солями, но также и потому, что эта группа аргоновых элементов совершенно сходна (даже по величине атомных весов) с другими наиболее характерными группами элементов, о чем подробнее говорится в главе 15. [c.170]


Смотреть страницы где упоминается термин Аргон определение гелия, кислорода: [c.68]    [c.126]    [c.246]    [c.460]    [c.44]    [c.657]    [c.217]    [c.338]   
Спектральный анализ газовых схем (1963) -- [ c.266 ]




ПОИСК





Смотрите так же термины и статьи:

Аргон

Аргон кислород

Аргон определение в гелии

Кислород определение

Кислород определение в гелии

Кислород, определение в аргон



© 2025 chem21.info Реклама на сайте