Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Микропоры

    Указано, что в гравитационном поле из осадка может быть удалена лишь избыточная влага при обезвоживании под вакуумом из осадка удаляется также осмотическая влага и влага, находящаяся в макропорах при обезвоживании в центрифугах в осадке остается только влага, находящаяся в микропорах, и адсорбированная влага все виды влаги могут быть удалены термической сушкой. [c.268]

    В настоящее время применяют различные адсорбенты, прежде всего порошкообразные и гранулированные угли (БАУ, ДАК, ОУ, КАД — молотый АГ-3 и др.) с размером гранул 1—6 мм, насыпной плотностью 350—600 кг/м предельным адсорбционным объемом микропор 0,26—0,59 см /г. [c.96]


    На основе анализа изменений пористой структуры (табл. 3.3) высказано предположение, что при внесении больших количеств металлов избыток их откладывается в виде кристаллитов в порах, в результате чего происходит закупорка мелких пор. Это предположение подтверждается изменением преобладающего радиуса микропор, равного для носителя 8 нм, а в катализаторах с ростом содержания активных металлов смещается в сторону больших значений для КГ-5 составляет 9,2 нм, для КГ-9 - 12,6 нм. Содержание кристаллитов металлов в макропорах носителя, имеющих радиус более 100 нм, приводит к смещению их в сторону меньшего размера пор, что и обуславливает, по-видимому, возрастание объема пор с радиусом 10-100 нм и, в конечном итоге, несколько снижает объем макропор. [c.102]

    Для экспериментального измерения объемов макро-пор радиусом более 1000 А и переходных пор радиусом от 16 до 1000 А используют методы капиллярной конденсации или ртутной порометрии. Микропоры менее 15 А исследуют преимущественно адсорбционным методом, позволяющим оценивать лищь их общий объем. [c.96]

    Характер изменений в пористой структуре в различной степени отработанных катализаторов наглядно показан и при изучении параметров диффузии набором углеводородов от нонана до мезитилена в присутствии различных растворителей [112]. При переработке остаточного сырья коэффициент диффузии углеводородов существенно уменьшается в результате блокировки пор отложениями металлов и углерода. Объем микропор (радиусом 2-3 нм) уменьшается в 5-10 раз, а средних пор (радиусом 5-30 нм) уменьшается примерно в два раза. [c.140]

    Для применения иа практике мембраны должны обладать высокой абсолютной проницаемостью для гелия и селективностью, быть химически и физически стабильными, обладать высокой прочностью и не иметь дефектов в виде микропор. Ведутся широкие исследования для разработки и совершенствования мембранной технологии. [c.207]

    I — общий объем пор (3,75 — 7500 нм) 2 — объем микропор (3,75—15 им) 3 — объем микропор (15 —7500 нм). [c.136]

    Поры, имеющие радиус меньше 100 А, называют микропорами, [c.45]

    Существенное влияние на величину D в катализаторах, содержащих узкие поры, оказывает распределение пор по размерам. При резко неоднородном распределении размеров пор само понятие эффективного коэффициента диффузии теряет определенность [8]. Представим себе частицу, свободный объем которой состоит из сети широких транспортных макропор и множества отходящих от них узких капилляров, работающих в кнудсеновской области. Зерна такой структуры, которые образуются при спрессовывании мелких микропористых гранул катализатора, находят себе широкое применение, поскольку они сочетают хорошо развитую внутреннюю поверхность с относительно высокой скоростью диффузии, обеспечиваемой системой транспортных макропор (см. главу V). Измерение величины D в подобном составном зерне (путем измерения скорости диффузии через зерно вещества, не вступающего в химические превращения) даст, очевидно, лишь величину D в макропорах. Между тем, химическая реакция, протекающая в основном в капиллярах, на которые приходится преобладающая часть внутренней поверхности катализатора, может лимитироваться гораздо более медленной диффузией в кнудсеновских микропорах. [c.101]


    Степень использования микропор [c.105]

    На рис. 1-77 представлена зависимость отношения общей степени использования катализатора к степени использования микропор от величины Ф, являющейся функцией модуля Тиле г ). [c.105]

    Sh —критерий Шервуда tio —общая степень использования микропор fi —степень использования микропор ф —модуль Тиле — эффективный размер частицы 1 —константа скорости реакции на поверхности Од — эффективный коэффициент диффузии в микропорах К —константа равновесия. [c.105]

    Различные классификации типоразмеров пор совместно с протекающими в них процессами насчитывают до 15 разновидностей типоразмеров [52]. Для каталитических процессов наиболее распространена трехступенчатая классификация, по которой поры размером меньше 100 А относятся к микропорам, размером от 100 до 1000 А — к мезопорам, размером свыше 1000 А — к макро-порам. Последние выполняют в основном роль транспортных пор. В мезопорах и частично в микропорах идет собственно процесс катализа. Фактически соотношение размеров каталитической поры и молекулы катализируемого вещества должно быть менее одного порядка, чтобы обеспечить ненулевую вероятность попадания молекулы в пору [53]. [c.140]

    Соотношения размеров поры и молекул, участвующих в каталитическом процессе (исходных веществ и в том числе нейтральных примесей и каталитических ядов, промежуточных комплексов и продуктов реакций), определяют структурную возможность осуществления данного набора каталитических реакций в порах данного размера. Перекрывание электрических полей противоположных стенок норы или изменение строения электрического поля катализатора вследствие искривления его поверхности в микропорах может существенно повлиять на величину адсорбции и энергию активации каталитических реакций. Изменение расположения и взаимного влияния активных центров на сильно искривленной поверхности катализатора изменяет его активность, селективность и стойкость к отравлению, вызывает новые побочные реакции. При этом тонкие поры, сопоставимые с размерами молекул реагирующих веществ, инертных примесей или продуктов реакций, могут уже в самом начале процесса оказаться полностью исключенными из участия в нем в результате геометрического несоответствия размеров молекул и пор. Это происходит в результате чрезвычайно сильной адсорбции веществ, которые, прочно фиксируясь в порах катализатора, будут экранировать их, играя роль порового яда . В таких случаях целесообразно говорить об эффективной микропористости катализатора. Для пор надмолекулярных размеров возможно также интенсивное взаимодействие электронных полей молекул и стенок пор, изменяющее скорости диффузии веществ в порах [53]. [c.140]

    Модель параллельных микро- и макропор с переменными радиусами [66]. Рассматриваемая модель фактически является комбинированной моделью, объединяющей модели цилиндрических пор переменного радиуса и непересекающихся параллельных цилиндрических капилляров. Согласно модели, макро- и микро-поры предполагаются параллельными друг другу. Как макро-, так и микропоры представляют собой системы соосных цилиндров различных радиусов. Длина цилиндрических участков пор рассчитываются по соотношениям (3.5), (3.6), величина потоков в порах — по соотношениям (3.1), (3.7), в которых величина Ы2 заменяется величиной Ь. Неизвестными параметрами модели являются коэффициент извилистости т и параметры и уравнения (3.6). [c.148]

    Таким образом, результаты исследований демонстрируют необходимость применения на установках Сульфрен, с целью уменьшения выбросов диоксида серы в атмосферу, катализаторов с максимальным объемом микропор радиусом менее 30 А.  [c.164]

    Принята [194] следующая классификация избыточная влага осмотическая влага влага, находящаяся в макропорах (диаметр более 0,1 мкм) влага с иммобилизованной структурой влага, находящаяся в микропорах (диаметр менее 0,1 мкм) влага, адсорбированная в виде полимолекулярной пленки влага, адсорбированная в виде мономолекулярной пленки. [c.267]

    Макро- и микропоры в окисной пленке Неравномерное распределение на поверхности металла вторичных продуктов коррозии Неравномерная деформация [c.189]

    При описании макрокинетики каталитической реакции на составных зернах применяют двойную диффузионную модель, вводя отдельные эффективные коэффициенты диффузии для системы транспортных макропор и для микропор в мелких гранулах 19]. При этом сначала определяют зависимость скорости реакции в мелких гранулах от локальных концентраций реагентов в транспортных макропорах, а затем вычисляют макроскопическую скорость реакции в зерне в целом с учетом диффузионного торможения в макропорах. Описывать составное зерно как квазигомогенную среду с эффективным коэффициентом диффузии, найденным в отсутствие химической реакции, можно только в предельных случаях, когда реакция либо не тормозится диффузией в микропорах, либо протекает настолько быстро, что локализуется па внешней поверхности малых гранул. [c.102]

    Для увеличения активности антрацита его подвергают нагреву для удаления летучих веществ, в результате чего получаются микро-поры. Установлено, что при активировании антрацита в кипящем слое наилучшая пористость получается при невысокой скорости выгорания углерода в среде водяного пара наиболее эффективным методом снижения скорости выгорания углерода является уменьшение размера частиц перерабатываемого антрацита до 0,3—0,6 мм при соответствующем сокращении расхода реакционного газа и удлинении процесса активации до 5 ч. Структура активированного антрацита, полученного в кипящем слое, довольно однородна с преобладающим количеством микропор. [c.241]


    Унос паров серы из реакторов установок Сульфрен в условиях фазового равновесия с серой, заполняющей поры катализатора, снижает, достигаемую в процессе, степень извлечения серы на 2,5 % [1]. Для снижения потерь серы с паровой фазой в процессе Сульфрен необходимо применять катализаторы с максимальным объемом микропор радиусом менее ЗОА. [c.162]

    И экспериментальные исследования [33] на катализаторах с различной пористой структурой. Катализатор А2/5 фирмы Рон-Пуленк , имеющий объем микропор О, 246 см /г со средним радиусом 1бХ, специально предназначен для установок Сульфрен и используется на 40 Оренбургском и Астраханском ГПЗ. СР - катализатор процесса Клауса той [c.163]

    Упругость паров серы над катализатором с увеличением времени от начала фазы адсорбции существенно возрастает (рис. 4.35). При этом рост давления паров тем больше, чем меньше в катализаторе объем микропор, а сама упругость паров и, соответственно, потери серы тем ниже, чем меньше радиус микропор. Унос паров в условиях фазового равновесия с серой, заполняющей поры катализатора, умень- [c.163]

    Роль катализатора в процессах деметилирования ограничена. Он должен облегчать зарождение радикалов и быть устойчивым к отложению кокса. Поэтому важное значение придается удельной поверхности и размерам нор катализатора. Так, считают , что катализатор должен иметь минимальное количество микропор, средний радиус которых увеличивается путем прокаливания. Для пониже- ния коксообразования уменьшают кислотность носителей и вводят в них щелочные металлы Уменьшению коксообразования способствует и вода, конкурируя в. адсорбции с предшественниками кокса [c.333]

    Основной вывод из этих работ — наибольшим изменениям подвергаются микропоры с радиусом до 10 нм. По мере отработки катализатора их объем снижается, причем в большей степени в начальный период времени работы. Уменьшается и объем акропор, но в меньшей степени. Исследования изменения пор по всей шкале их изменений Гфи различной степени отработки широкопористого катализатора приведены в [35]. [c.131]

    Из данных табл. 3.10 и рис. 3.35, 336 видно, что уже после обработки катализатора фракцией дизельного топлива в течение 30 ч общий объем пор и распределение пор по радиусам претерпевамь значительные изменения, которые прежде всего выражаются в уменьшении среднего радиуса микропор с 9,0 до 7,5 нм и их объема с 0,45 до 0,41 см /г. При переработке ДАО наиболее резкие изменения объема пор и распределения пор по радиусам происходят в течение первых 50-300 ч и зависят от места раположения катализатора по высоте слоя. Более резкие изменения в показателях поровой стр)т<туры наблюдаются у образцов, отобранных из входного слоя. Ьимодальность распределения пор по радиусам сохраняется и при длительной работе катализатора. Однако уменьшение общего объема пор происходит в основном за счет микропор (меньше 15,0 нм). Средний радиус микропор, оставшихся в практически полностью отработанных образцах 9 и 15 (см. табл. 3.10), составляет 5-6 нм, а общий их объем лишь 0,05-0,08 см /г из 0,45 см /г. [c.133]

    Дезактивация, как видно, в основном обусловлена постепенным сужением проходного сечения и полной закупоркой пор с радиусом преим)оцественно менее 15,0 нм в результате накопления загрязнений на стенках пор. Макропоры с радиусом от 100 до 1000 нм выполняют роль транспортных каналов и обеспечивают полную отработку микропор. [c.133]

    Легковесную глину смешивают с измельченным фар( ром и измельчают до получения частиц диаметром около 0,04 мм. Затем 100 частей этой смеси соединяют с 2—6 частями 0,8% -ной карбоксиметилцеллю-лозы, экструдируют в гранулы размером 0,5 мм, которые покрываются 1—2 частями порошка органического вещества (древесные опилки с диаметром частиц 0,04—0,15 мм). Затем медленно смешивают 75— 67 частей гранул с 5—7 частями вещества (диаметр частиц 0,07—0,15 мм), образующего микропоры, и покрывают 5—6 частями глины с 3—5 частями связки. Смешивают 85—70 частей гранул с 7—15 частями порообра-зующего вещества (имеющего диаметр частиц 0,25—2,4 ми) 6—10 [c.90]

    Ряд авторов описали МФ-катализаторы, фиксированные на полимерных подложках. Такие катализаторы представляют большой интерес для промышленного применения, поскольку их легко отделять после окончания реакции и,. кроме того, можно использовать в непрерывных процессах. Этот метод МФК получил название трехфазный катализ [19, 21, 22]. Реакция замещения с 1-бромоктаном при использовании закрепленной аммониевой соли имеет первый порядок ло субстрату. Если полистирол содержит 1—21% групп — H2NRз+ у фенильных колец, то активность таких смол прямо пропорциональна числу этих групп. Увеличение количества фенильных колец, имеющих группы —СНг—NMeз+, в микропорах полистирола до 46—76% приводит к резкому снижению каталитической активности. Продажные анионообменные смолы обычно мало подходят в качестве МФ-катализаторов [19]. Результаты изучения действия иммобилизованных ониевых солей, краун-эфиров и криптандов [20] показали, что в основном механизм реакций с этими катализаторами сходен с нормальным механизмом МФК-реакций. [c.79]

    Гривцов А. Г., Гривцова Л. А., Дубинин М. М. и <5р.//Адсорбция и подвижность молекул воды в щелевидных микропорах активного угля (ис- [c.277]

    Применимость этих результатов ограничена ввиду сложной геометрии пор. Была создана модель бидисперсной структуры, состоящей из микро- и макропор. При этом, однако, необходимо знать величину коэффициента диффузии как в микро-, так и макропорах в отдельности. Степень использования для микропор близка к единице. Она может быть меньше единицы, если велико отношение константы скорости поверхностной реакции к коэффициенту диффузии. На основании работ Мингле и Смитаи Харриота можно утверждать, что общая степень использования для изотерми- [c.104]

    Пустоты между первичными частицами образуют макропоры. Каждая первичная частица состоит из более мелких вторичных частиц, пустоты между которыми образуют микропоры. Причем радиусы первичных частиц существенно больше вторичных. Параметрами модели служат пористости гранулы катализатора и первичной частицы. Перенос массы в макро- и микропорах рассчитывается с использованием соотношения (3.1). Отмечается в [67], что бидиснерсная модель более реалистична, чем модели с цилиндрическими порами. [c.149]

    Обычно каталитические эксперименты проводят на лабораторных микрокаталитических установках при стационарном и нестационарном протекании процессов диффузии и адсорбции реактантов при этом одним из наиболее перспективных способов исследования физических свойств катализаторов и адсорбентов является экспрессный импульсный хроматографический метод, позволяющий в ограниченные промежутки времени для значений технологических параметров, близких к промышленным, получить (в частности, для MOHO- и бидисперсных моделей зерен катализаторов) важную информацию о численных величинах их констант, таких, как эффективные коэффициенты диффузии в макро- и микропорах, константы скорости адсорбции, константы адсорбционно-десорбционного равновесия, коэффициенты массоотдачи. Для оценки последних применяются метод моментов, метод взвешенных моментов, методы, использующие в своей основе преобразования Лапласа и Фурье и т. д. Однако все они обладают существенными недостатками применимы только для линейно параметризованных моделей, не позволяют провести оценку точности полученных параметров и оценку точности прогноза по моделям, не допускают проведение планирования прецизионного и дискриминирующего эксперимента. Отметим также, что при их практическом исполь- [c.162]

    В зависимости от размера пор, все пористые среды принято делить на три класса микро- и макропористые тела и структуры с переходными порами. Предельный радиус мнкропор не превышает 15 Л, т. е. молекулярных размеров, поэтому практически все пространство микропор находится в поле действия поверхностных сил. Адсорбционный потенциал в микропористых телах заметно выше, чем в других пористых системах. Характерный размер макропор условно принимают более 2000 А удельная поверхность тел с подобной структурой сравнительно невелика, так что влияние адсорбционных сил на процессы, протекающие в этих средах, незначительно. Более того, при стандартных условиях ( =25°С, Р = 760 мм рт. ст.) для большинства газов в каналах макропористых тел обычно реализуется континуальное течение, исключающее процесс разделения смеси. Поэтому макропористые тела используют в мембранной технологии в качестве дренажной системы (пористой подложки). [c.39]

    Межкристаллитная коррозия дюралюминия (около 4—5% Си 0,5—1,75% Mg, по 0,5% 81, Мп и Ре, ост. А1), согласно работам А. И. Голубева, связана с разрушением образующегося при распаде твердого раствора (в виде более или менее непрерывной цепочки на границах зерен) интерметаллического соединения СцА12 в тех случаях, когда процесс коррозии сопровождается выделением водорода. В этих случаях на включениях СиА12 и зернах твердого раствора не образуется кроющая пленка продуктов коррозии, которая обычно (при кислородной деполяризации) препятствует коррозии включений СиА1з, а следовательно, и развитию межкристаллитной коррозии. Первоначальными очагами выделения водорода и возникновения межкристаллитной коррозии являются, по данным С. Е. Павлова и С. М. Амбарцумяна, межкристаллитные микропоры на поверхности сплава. Поэтому в качестве одного из наиболее эффективных путей борьбы с межкристаллитной коррозией алюминиевых сплавов, содержащих медь, рекомендуется уплотнение структуры металла. [c.420]

    Теория БЭТ несмотря на условность предпосылок позволила вывести уравнение изотермы адсорбции, имеющей S-образную форму. Вид этой изотермы характерен для полимолекулярной адсорбции. При значениях давления, далеких от давления насыщенного пара при данной температуре, и значении константы равновесия полимолекулярной адсорбции С>1 уравнение S-образной изотермы переходит в уравнение изотермы адсорбции Лангмюра. Таким образом, адсорбция в каждом слое подчиняется уравнению Лангмюра. Существует пять основных типов изотермы адсорбции (рис. 109). Изотермы типа I характерны для микропористых адсорбентов выпуклые участки на изотермах типов И и IV свидетельствуют о присутствии в адсорбенте наряду с макропорами и микропор. Менее крутой начальный подъем кривых адсорбции может быть связан с наличием моно- и полимолекулярной адсорбции для адсорбента переходнопористого типа. Начальные вогнутые участки изотерм типов И1 и V характерны для систем адсорбент — адсорбат, когда взаимодействие их молекул значительно меньше межмолекулярного взаимодействия молекул адсорбата, вызванного, например, появлением водородных связей. Теория БЭТ является наиболее полной тео(рией физической адсорбции. [c.257]

    Все адсорбенты обладают пористой структурой. Однако размеры пор у адсорбентов различны от микропор, характерных для цеолитов и некоторых активированных углей, которые соизмери- [c.257]

    Сопоставлены результаты гидрокрекинга различного сырья на стационарном и движущемся катализаторах. Первые более эффективны но удалению серы, азота и кислорода при низких объемных скоростях, вторые — при более высоких. По выходу нафты катализаторы различаются только при низких объемных скоростях Описано модифицирование носителя кобальтмолибде-нового катализатора для гидроочистки мазутов (см.з ) добавками 1,5—3,1%- металлов второй группы. Окиси Be, Mg, Са, Sr, Zn и d увеличивают объем микропор и активность катализатора, а окись Ва — уменьшает Изучалось прямое обессеривание тяжелых масел и сырых нефтей на катализаторе повышенной активности в системе с движущимся слоем катализатора. Активность катализатора повышается с увеличением содержания СоО и М0О3. Из остатка с 4,26% серы получен продукт, содержащий 0,9% серы [c.87]


Библиография для Микропоры: [c.286]   
Смотреть страницы где упоминается термин Микропоры: [c.5]    [c.107]    [c.139]    [c.520]    [c.105]    [c.105]    [c.105]    [c.241]    [c.163]    [c.297]    [c.295]   
Курс коллоидной химии 1984 (1984) -- [ c.161 ]

Курс коллоидной химии 1995 (1995) -- [ c.178 ]

Химический энциклопедический словарь (1983) -- [ c.12 , c.19 ]

Курс коллоидной химии (1984) -- [ c.161 ]

Большой энциклопедический словарь Химия изд.2 (1998) -- [ c.12 , c.19 ]

Адсорбция газов и паров (1948) -- [ c.11 , c.506 ]

Процессы и аппараты химической промышленности (1989) -- [ c.386 ]

Активные угли и их промышленное применение (1984) -- [ c.13 , c.14 , c.15 , c.31 , c.34 , c.36 , c.57 , c.81 , c.99 , c.170 , c.201 ]

Краткий курс физической химии Издание 3 (1963) -- [ c.348 ]

Регенерация адсорбентов (1983) -- [ c.5 , c.6 , c.46 , c.131 ]

Химия привитых поверхностных соединений (2003) -- [ c.32 , c.123 , c.304 , c.426 ]

Введение в мембранную технологию (1999) -- [ c.167 ]




ПОИСК





Смотрите так же термины и статьи:

Адсорбаты для исследования микропор

Адсорбция заполнение микропор

Адсорбция объемного заполнения микропор Дубинина

Дубинина классификация пор теория заполнения микропор

Закупорка микропор

Использование г-метода для определения объема микропор и поверхности переходных пор углеродных адсорбентов по адсорбции из водных растворов

Классификация пор по размерам. Микропоры, макропоры и переходные поры

Кремнезем пирогенный микропоры в частицах

Лангмюра объемного заполнения микропор

Микропора, выделения из нее

Микропоры, анализ

Неймарк И. Чертов В. М Основы теории объемного заполнения микропор для неоднородных микропористых структур

Объем пор микропоры и макропоры

Параметры микропор

Поры адсорбента микропоры

Поры в частицах силикагелей микропоры

Расчет адсорбции бинарной смеси паров на основе теории объемного заполнения микропор

СТРУКТУРА И ПРИРОДА ПОВЕРХНОСТИ АДСОРБЕНТОВ М М Дубинин Адсорбция в микропорах

Силикагель азота, анализ микропор

Степень из микропор

Теория объемного заполнения микропор

Термодинамические аспекты теории объемного заполнения микропор

Удельный объем микропор

Характеристика микропористых адсорбентов на основе теории объемного заполнения микропор

Этерификация в микропорах

Этерификация кремнезема в микропорах



© 2025 chem21.info Реклама на сайте