Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Периодическая система и энергия ионизации

    Литий Ь от остальных щелочных металлов отличает большее значение энергии ионизации и небольшой размер атома и иона. Литий по свойствам напоминает магний (диагональное сходство в периодической системе). [c.485]

    Пример 4. В первой группе периодической системы элементов значения энергий ионизации составляют Е (Ь1)=520, Е (Сз) = = 375, Е (Си) =743, Е (Аи) =888 кДж/моль. В какой подгруппе металлические свойства выражены сильнее и почему  [c.24]


    Подгруппа галлия располагается в периодической системе непосредственно после семейств d-элементов. Поэтому на свойствах галлия и его аналогов в значительной степени сказывается d-сжатие. Так, от А1 к Ga атомный радиус несколько уменьшается, а энергия ионизации возрастает. На свойствах таллия, кроме того, сказывается и /-сжатие. Поэтому от In к Т1 размер атома и иона увеличивается незначительно, а энергия ионизации даже несколько возрастает. Остальные свойства элементов подгруппы галлия изменяются в той же последовательности, как и в других подгруппах р-элементов. [c.462]

    При сравнении металлов, занимающих то или иное положение в периодической системе, за меру их химической активности — восстановительной способности — принимается величина энергии ионизации свободных атомов. Действительно, при переходе, например, сверху вниз по главной подгруппе I группы периодической системы энергия ионизации атомов уменьшается, что связано с увеличением их радиусов (т. е. с большим удалением внешних электронов от ядра) и с возрастающим экранированием положительного заряда ядра промежуточными электронными оболочками. Поэтому атомы калия проявляют большую химическую активность — обладают более сильными восстановительными свойствами, чем атомы натрия, а атомы натрия — большую активность, чем атомы лития. [c.329]

    I А группу периодической системы составляют щелочные металлы, атомы которых имеют по одному оптическому электрону в состоянии П5 п — главное квантовое число оптического электрона). Эти металлы имеют самую низкую из всех элементов периодической системы энергию ионизации и энергию возбуждения спектральных линий. [c.40]

    Современное состояние учения о строении атома позволяет подтвердить глубокий физический смысл в делении групп на подгруппы в короткой форме периодической системы. Анализ изменения широко применяемых в химии энергетических характеристик атомов элементов — энергии ионизации, сродства к электрону, электроотрицательности — согласуется с приведенными выводами. [c.82]

    В табл. 3.1 приведены экспериментальные данные о некоторых энергиях ионизации первых двадцати элементов периодической системы. Энергия ионизации первого электрона каждого элемента занимает крайнее правое место в соответствующей строке если бы таблица была полной, то энергия ионизации последнего, т. е. 2-го, электрона каждого элемента была бы обязательно указана на крайнем левом месте строки. Все данные приведены в килокалориях на моль и соответствуют при чтении справа налево энергии, необходимой для удаления каждого последующего электрона (от 1-го до Е-го) из моля атомов конкретного элемента. Например, для удаления первого электрона из каждого атома в моле натрия требуется 118 ккал/моль, а для удаления второго электрона — 1090 ккал/моль и т. д. для удаления последнего (одиннадцатого) электрона необходимо почти 40 ООО ккал/моль. [c.90]


    Энергия, необходимая для отрыва одного электрона от атома, называется первым потенциалом ионизации. Если атом имеет несколько электронов, то он соответственно характеризуется несколькими потенциалами ионизации — вторым потенциалом, т. е. энергией, необходимой для отрыва второго электрона от однозарядного иона, третьим — энергией, необходимой для отрыва электрона от двухзарядного иона, и т.д. Каждый последующий потенциал всегда больше предыдущего, так как по мере увеличения положительного заряда атомного остова он все более прочно удерживает остающиеся электроны в результате усиления кулоновского притяжения. Например, для алюминия первые три потенциала ионизации равны соответственно 6,0 18,8 и 28,4 эВ. Зависимость первых потенциалов ионизации от положения элемента в периодической системе приведена на рис. 13. Видно, что наблюдается отчетливая периодичность в изменении потенциалов ионизации, причем максимумы соответствуют инертным газам, имеющим заполненные электронные оболочки, а минимум — щелочным металлам, имеющим единственный электрон вне конфигурации инертного газа. [c.48]

    Теперь, когда мы немного разобрались, почему меняется прочность связи валентных элеюронов с ядром в зависимости от положения элемента в Периодической системе, то овладели аппаратом, который позволит понять разделение простых веществ на металлы и неметаллы. Повторим, что нам известно о металлах. Их отличает металлический блеск, высокая тепло- и электропроводность, прочность и пластичность. Атомы металлов имеют низкие значения энергии ионизации. Их электроотрицательность тоже относительно невелика. Как связаны эти свойства со строением  [c.54]

    Первая энергия ионизации (ЭИ), сродство к электрону (СЭ) н электроотрицательность (х) атомов в периодической системе  [c.392]

    Таковы основные закономерности изменения энергии ионизации в периодической системе. Мы видим, что они получают простое истолкование на основе данных об электронном строении атомов элементов. [c.77]

    При сравнении же металлов в ряду напряжений за меру химической активности принимается работа превращения металла, находящегося в твердом состоянии, в гидратированные ионы в водном растворе. Эту работу можно представить как сумму трех слагаемых энергии атомизации — превращения кристалла металла в изолированные атомы, энергии ионизации свободных атомов металла и эиергии гидратации образующихся ионов. Энергия атомизации характеризует прочность кристаллической решетки данного металла. Энергия ионизации атомов — отрыва от них валентных электронов — непосредственно определяется положением металла в периодической системе. Энергия, выделяющаяся при гидратации, зависит от электронной структуры нона, его [c.283]

    При сравнении же металлов в ряду напряжений за меру химической активности принимается работа превращения металла, находящегося в твердом состоянии, в гидратированные ионы в водном растворе. Эту работу можно представить как сумму трех слагаемых энергии атомизации — разбиения кристалла металла на атомы, энергии ионизации свободных атомов металла и энергии гидратации образующихся ионов. Энергия атомизации характеризует прочность кристаллической решетки данного металла. Энергия ионизации атомов — отрыва от них валентных электронов — непосредственно определяется положением металла в периодической системе. Энергия, выделяющаяся при гидратации, зависит от электронной структуры иона, его заряда и радиуса. Ионы лития и калия, имеющие одинаковый заряд, но различные радиусы, будут создавать около себя неодинаковые электрические поля. Поле, возникающее вблизи маленьких ионов лития, будет более сильным, чем поле около больших ионов калия. Отсюда ясно, что ионы лития будут гидратироваться с выделением большей энергии, чем ионы калия. [c.289]

    Если же исходить из того, что для завершения внешнего электронного слоя атому водорода не хватает одного электрона, то водород следует поместить в VII группе. Кроме того, как и атомы галогенов, атомы водорода характеризуются высокими значениями энергии ионизации. Многие ученые помещают водород в VII группу периодической системы. Вместе с тем водород—элемент особый, и размещение его в той или иной группе таблицы в значительной мере условно. [c.272]

    Количественной характеристикой окислительной способности атомов является величина энергии сродства к электрону, т. е. энергии, выделяющейся при присоединении электрона к нейтральному атому. Величина энергии сродства к электрону значительно меньше величины энергии ионизации тех же атомов. Обе эти величины изменяются в зависимости от изменения величины заряда ядра и размеров атома с увеличением заряда ядра они должны увеличиваться, а с увеличением радиуса атома уменьшаться. В связи с этим в каждом периоде наблюдается увеличение энергии ионизации от щелочных металлов к инертным элементам. В вертикальных же группах дело обстоит сложнее в главных подгруппах увеличение радиуса атомов сверху вниз перекрывает увеличение заряда ядер и потому энергия ионизации от верхних элементов к нижним уменьшается в побочных же подгруппах этого перекрывания не наблюдается и потому энергия ионизации изменяется не столь явно. Что касается энергии сродства к электрону, то она вообще изменяется симбатно с изменением энергии ионизации, но, поскольку величины энергии сродства к электрону малы по сравнению с величинами энергии ионизации, изменения первых бессмысленно наблюдать у элементов, расположенных в левой и нижней частях периодической системы кроме того, энергия сродства к электрону, увеличиваясь для элементов от четвертой до седьмой главных подгрупп, резко падает от седьмой к восьмой главной подгруппе. Изменение величины ионизационных потенциалов в зависимости от порядкового номера элемента графически показано на рис. 1.1. На рис. 1.2 приведена зависимость изменения радиусов атомов от порядкового номера. [c.34]


    Обсуждаемые в данной главе атомные свойства-энергия ионизации, сродство к электрону и радиус атома - непосредственно связаны с электронным строением атома. Рекомендуется довольно подробно остановиться на обсуждении их закономерного изменения соответственно положению элемента в периодической системе. [c.574]

    Эти пособия позволяют учащимся в диалоге с компьютером обсуждать первоначальные химические понятия, важнейшие классы неорганических соединений, периодическую систему химических элементов и строение атома, общие закономерности химических реакций и пр. При изучении периодической системы химических элементов и строения атомов можно рекомендовать компьютерную программу Ядро атома , Электронное строение атомов химических элементов , Энергия ионизации атомов . [c.4]

    Пользуясь изложенными здесь сведениями, можно объяснить закономерности изменения энергии ионизации в периодической системе. Рассмотрим первые энергии ионизации. [c.75]

    Особенность строения электронной оболочки атома водорода (как н гелия) не позволяет однозначно решить, в какой группе периодической системы он должен находиться. Действительно, если исходить И числа валентных электронов его атома, то водород должен нахо-д.1ться в I группе, что подтверждается также сходством спектров щ,е-лочных металлов и водорода. Со щелочными металлами сближает водород И его способность давать в растворах гидратированный положительно однозарядный ион Н+ (р). Однако в состоянии свободного иона Н + (г) — протона — он не имеет ничего общего с ионами щелочных мгталлов. Кроме того, энергия ионизации атома водорода намного больше энергии ионизации атомов щелочных металлов. [c.272]

    В первой группе периодической системы элементов энергия ионизации атомов главной подгруппы значительно меньше энергии ионизации атомов побочной подгруппы. Можно ли считать такое соотношение выполнимым и в седьмой группе периодической системы  [c.25]

    Энергия ионизации атома водорода равна 13, 595 эВ, сродство к электрону 0,78 эВ. Сравните эти характеристики водорода с соответствующими характеристиками галогенов и щелочных металлов (см. главу 17) и обсудите целесообразность помещения водорода в VII группу (главную подгруппу) периодической системы химических элементов Д. И. Менделеева, [c.108]

    Атомы большинства металлов на внешнем энергетическом уровне имеют небольшое количество электронов. Так, среди типичных металлов по одному электрону на внешнем уровне содержат 16 элементов, по два - 58, по три - всего 4 элемента, и ни одного - только палладий. Посмотрите, как расположены металлы в Периодической системе. Их расположение позволяет предполагать слабую связь валентных электронов с ядром, т. е. низкие значения энергии ионизации и низкую электроотрицательность. [c.54]

    Используя изложенные сведения, рассмотрим закономерности изменения первых энергий ионизации /1 элементов в порядке расположения их в периодической системе. [c.46]

    Рассмотрим, как изменяются первые энергии ионизации с увеличением атомного номера у атомов одной и той же подгруппы периодической системы (табл. 3.5). [c.84]

    Таким образом, в ходе рассматриваемого превращения затрачивается энергия на атомизацию и ионизацию и выделяется энергия при гидратации. Чем меньше будет суммарная затрата энергии, тем легче будет осуществляться весь процесс и тем ближе к началу ряда напряжений будет располагаться данный металл. Но из трех слагаемых общего баланса энергии только одно — энергия ионизации — непосредственно определяется положением металла в периодической системе. Следовательно, нет оснований ожидать, что взаимное положение тех или иных металлов в ряду напряжений всегда будет соответствовать их положению в периодической системе. Так, для лития суммарная затрата энергии оказывается меньшей, чем для калия, и литий стоит в ряду напряжений раньше калия. [c.329]

    У бериллия (ls 2s ) по сравнению с бором ( s 2s 2p ) в соответствии с увеличением радиуса атома и уменьшением числа валентных электронов неметаллические признаки проявляются слабее, а металлические усиливаются. Бериллий обладает более высокими энергиями ионизации атома (II = 9,32 эВ, /а == 18,21 эВ), чем остальные s-элементы II группы. В то же время он во многом сходен с алюминием (диагональное сходство в периодической системе) и является типичным амфотерным эле.ментом в обычных условиях он простых ионов не образует для него характерны комплексные ионы как катионного, так и анионного типа. Во всех устойчивых соединениях степень окисления бериллия -f2. Для Ве (II) наиболее характерно координационное число 4 (зр -гибри-Д1(зация валентных орбиталей). [c.470]

    Нетрудно понять, почему для элементов той или иной группы периодической системы энергия ионизации уменьшается с увеличением атомного номера. По мере возрастания атомного номера атомы становятся все больше и больше, и электрон, отрываемьиг при ионизации — один из внешних электронов атома,— не так сильно связан с ядром в большом атоме, как в малом. [c.152]

    Общая закономерность, наблюдаемая во втором периоде периодической системы, заключается в том, что каждый новый электрон в атоме следующего элемента удерживается более прочно из-за увеличивающегося заряда ядра. Поскольку остальные 25- и 2р-электроны находятся приблизительно на таком же расстоянии от ядра, как и добавляемый электрон, он практически не экранируется ими от последовательно возрастающего положительного заряда ядра. Этот возрастающий заряд оказывает на появляющийся в атоме фтора, Р, пятый 2р-электрон больщее влияние, чем увеличивщееся межэлектронное отталкивание. Поэтому пятый р-электрон в атоме Р удерживается очень прочно и первая энергия ионизации снова возрастает. Наиболее устойчивая конфигурация образуется при появлении щестого 2р-электрона, завершающего оболочку с п = 2, в атоме благородного газа неона, Ые  [c.395]

    Неравномерный характер изменения физико-химических свойств соединений с увеличением порядкового номера входящих в него элементов впервые отмечен Бироном [3] в 1915 г. для соединений элементов V, VI и VII групп периодической системы и был назван законом вторичной периодичности. Щукарев [14] показал, что явление вторичной периодичности непосредственно отражает периодическое изменение энергии ионизации атомов элементов основных групп по мере роста их атомного номера. Вторичная периодичность в виде неравномерного характера зависимости различных свойств от общего числа электронов наблюдается также у элементов IV группы и у полупроводниковых соединений А В [4]. Эта периодичность была отмечена также Фольбертом [81]. [c.114]

    Выяснение электронного строения атомов всех элементов периодической системы облегчается мысленным процессом последовательного заселения электронами водородоподобных орбиталей в порядке повышения их энергии и одновременного увеличения заряда ядра на единицу с каждым добавляемым электроном. При этом особое внимание следует обращать на связь между орбитальной электронной конфигурацией атомов и их первой энергией ионизации. Первой энергией ионизации (ЭИ атома называется энергия, необходимая для удаления из атома одного электрона, т. е. для осуществленР я процесса [c.391]

    Периодическяя система и ее связь со строением атомов. Заполнение электронных слоев и оболочек атомов. Периодическое изменение свойств элементов.. Атомшле и ионные радиусы. Энергия ионизации, сродство к электрону, гэлектроотрицательность. [c.179]

    Электроотрицательность — это количественная характеристика способности атома в молекуле притягивать к себе электроны. Она равна полусумме энергии ионизации и сродства атома к электрону. Зависимость электроотрицательности от порядкового номера элемента носит периодический характер электроотрицательность возрастает внутри периода и уменьшается внутри группы периодической системы элементов. На практике пользуются относительными значениями электроотрицательности (ОЭО), принимая за единицу электроотрйцательность лития (табл. 10). [c.22]

    Если одному из элементов произвольно приписать определенное значение электроотрицательности (для атома углерода С х = 2,5), то можно рассчитать эти значения для других элементов (табл. А.13, рис. А.42). Чем объясняются различия вэлект роотрицательности элементов, явно имеющие периодический характер (рис. А.42) Возьмем первый период периодической системы от до Р д регулярно увеличивается на 0,5 единицы для каждого последующего элемента очевидно, это объясняется увеличением зарядового числа ядра и вследствие этого усилением электростатического притяжения 2 - и 2р-валентных электронов. При переходе от Р (1Ые)- Ыа это притяжение резко падает, так как валентные электроны этих элементов находятся на более удаленных от ядра уровнях 3 (соответственно Зр). Действительно, электроотрицательность проявляет такую же периодичность, как и энергия ионизации элементов. Согласно Малликену, мерой притяжения валентного электрона в нейтральном атоме, иначе говоря, электроотрицательностью, является среднее арифметическое между энергией ионизации (за- [c.102]

    В соответствии со сказанным, самыми сильными восстановителями являются элементы, находящиеся в начале каждого периода и в конце I главной подгруппы (элементы цезий 55Сз, франций ваРг)- Их атомы имеют самые низкие значения энергии ионизации. Самыми сильными окислителями являются элементы, располагающиеся в правом верхнем углу таблицы периодической системы (фтор, кислород, хлор). Атомы этих элементов обладают наивысшими значениями сродства к электрону. [c.85]

    Все элементы в соответствии с электронным строением атомов можно подразделить на металлы и неметаллы. Такая дифференциация элементов относительна. Б каждом элементе представлены в той или иной мере оба противоположных качества. Металлические свой-, ства элементов определяются способностью атомов при взаимодействии частично или полностью смещать электронные облака к другим атомам ( отдавать электроны), проявлять восстановительную активность. К самым активным металлам относятся элементы с меньшей энергией ионизации и электроотрицательностью, максимально большими радиусами атомов и малым числом внешних электронов (например, щелочные металлы). Неметаллические свойства определяются способностью атомов принимать электроны, проявлять при взаимодействии окислительную активность. К наиболее активным неметаллам (окислителям) относятся элементы с большой энергией ионизации атомов, большим сродством к электрону и минимально возможными радиусами атомов (галогены, кислород, сера). Из 107элементов металлическими свойствами обладают 85, неметаллическими — 22. Ряд элементов проявляет амфотерные свойства (Ве, 2п, А1, 5п, РЬ и др.). Изменение свойств элементов в периодической системе можно проследить в трех основных направ- [c.84]

    К /з-элемеитам У1А-подгруппы периодической системы относятся типические элементы — кислород (О), сера (Я) и элементы подгруппы селена —селен (5е), теллур (Те), полоний (Ро). Характер-)1ые степени окнсления элементов изменяются от —2 до- -4 и +6. По химическим свойствам элементы У1А-подгрупиы, кроме полония, неметаллы. В ряду О—8—5е—Те—Ро увеличение радиусов атомов и соответственно уменьшение энергий ионизации (табл. 16.1) приводит к ослаблению неметаллических и появлению металлических свойств (Ро). [c.321]


Смотреть страницы где упоминается термин Периодическая система и энергия ионизации: [c.292]    [c.292]    [c.292]    [c.293]    [c.386]    [c.43]    [c.206]    [c.182]    [c.587]    [c.380]   
Современная общая химия Том 3 (1975) -- [ c.3 , c.289 , c.291 , c.292 ]

Современная общая химия (1975) -- [ c.3 , c.289 , c.291 , c.292 ]




ПОИСК





Смотрите так же термины и статьи:

Периодическая система

Энергия ионизации



© 2025 chem21.info Реклама на сайте