Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Аминокислоты в синтезе белка

    Буквально все имевшиеся тогда факты убеждали меня в том, что ДНК служит матрицей, на которой образуются цепочки РНК. В свою очередь, цепочки РНК были вполне вероятным кандидатом на роль матриц для синтеза белка. Какие-то неясные данные, полученные на морских ежах, истолковывались как доказательство превращения ДНК в РНК, но я предпочитал доверять другим экспериментам, свидетельствовавшим о том, что образовавшиеся молекулы ДНК весьма и весьма стабильны. Идея бессмертия генов была похожа на правду, и я повесил на стену над своим столом листок с надписью ДНК->РНК->Белок. Стрелки обозначали не химические превращения, а перенос генетической информации от последовательности нуклеотидов в ДНК к последовательности аминокислот в белках. [c.89]


    Проблема строения и синтеза белков — одна из важнейших в современной науке. В этой области в последние десятилетия достигнуты большие успехи. Установлено, что десятки, сотни и тысячи молекул аминокислот, образующих гигантские молекулы белков, соединяются друг с другом, выделяя волу за счет карбоксильных и аминогрупп структуру цепи такой молекулы можно представить так  [c.498]

    Все многообразие белков образовано 20 различными аминокислотами при этом для каждого белка строго специфичной является последовательность, в которой остатки входящих в его состав аминокислот соединяются друг с другом. Найдены методы выяснения этой последовательности в резу.пьтате уже точно установлено строение ряда белков. И самым замечательным достижением в этой области явилось осуществление синтеза из аминокислот простейших белков как уже указывалось, в 50—60-х годах XX века синтетически получены гормон инсулин и фермент рибонуклеаза. [c.586]

    Принципы синтеза пептидов были изложены в кн. I в разделе Аминокислоты . Синтез белков, строение которых в отношении последовательности аминокислот известно, ничем кроме громоздкости не отличается от синтеза пептидов. [c.664]

    Отсюда ясно, что для успешного синтеза белков необходимо последовательное присоединение аминокислот с малой степенью образования побочных продуктов. Этого можно добиться, используя защитные группировки для аминогрупп, карбоксильных групп и боковых цепей, потенциально способных участвовать в реакции. В качестве примера вернемся к синтезу Gly-Ala если аминогруппа глицина защищена (превращена в химически неактивную), то взаимодействие молекул глицина между собой невозможно. Далее, если карбоксильная группа аланина также защищена, то единственная возможная реакция — взаимодействие карбоксильной (активированной) группы глицина и аминогруппы аланина с образованием искомого дипептида. [c.68]

    Частицы, называемые рибосомами, играют важнейшую роль в синтезе белка. Прежде чем попасть на собственно матричную РНК, аминокислоты соединяются с РНК, которая доставляет их к месту белкового синтеза. Эта транспортная РНК (т-РНК) существует во многих формах, так как число переносимых ею аминокислот (20) велико и каждой аминокислоте соответствует своя т-РНК. [c.391]

    Наиболее изучены следующие системы ферментов системы гликолиза, окисления жирных кислот, цикла трикарбоновых кислот, ферменты дыхательной системы (переноса электронов), преобразования и синтеза аминокислот, синтеза белков, синтеза липидов, образования мочевины, синтеза пуринов и пиримидинов п синтез ДНК и РНК. [c.159]


    Деструкция полимеров — это разрушение макромолекул - под действием различных физических и химических агентов. В результате деструкции, как правило, уменьшается молекулярная масса полимера, изменяется его строение, а также физические и механические свойства полимер становится непригодным для практического использования. Следовательно, этот процесс является нежелательной побочной реакцией при химических превращениях, переработке и эксплуатации полимеров. В то же время реакции деструкции в химии высокомолекулярных соединений играют и положительную роль. Эти реакции используют для получения ценных низкомолекулярных веществ нз природных полимеров (например, аминокислот из белков, глюкозы из крахмала), а также для частичного снижения молекулярной массы полимеров с целью облегчения их переработки. С помощью некоторых деструктивных процессов можно определять строение исходных полимеров и сополимеров. Процессы, приводящие к разрыву химических связей в макромолекулах, как уже отмечалось, используют для синтеза привитых и блок-сополимеров. [c.67]

    Из эндосом захваченные микромолекулы (ионы, моносахариды, аминокислоты и др.) легко могут проникать в цитоплазму клетки и включаться в обмен. При отсутствии в среде инкубации аминокислот синтез белка в макрофагах снижается на 30%, но в присутствии в среде 2% альбумина процесс нормализуется за счет пиноцитоза этого белка и его дальнейшей трансформации. [c.18]

    Способность использовать ароматические соединения распространена лучше всего среди псевдомонад. Расщепление этих соединений происходит только в аэробных условиях. Для синтеза аминокислот (и белка), (Пуриновых и пиримидиновых оснований, а также некоторых витаминов микроорганизм должен получать в доступной для пего форме азот. [c.284]

    Поскольку каждая аминокислота присоединяется поочередно, при химическом синтезе белков очень важен выход на каждой стадии. Вновь обращаясь к синтезу Gly-Ala, отметим, что, если синтез пептидной связи прошел на 90%, такой синтез может считаться удовлетворительным. Однако, если те же условия использованы для синтеза декапептида грамицидина S, то общий выход составит 0,9 X 100% = 35%. При этом не учитываются потери при введении и снятии защитных групп. Следовательно, при синтезе белковых макромолекул образование пептидной связи должно проходить с высоким выходом. [c.68]

    Сопряжение я-электронов азота, углерода и кислорода придает пептидной связи особый характер. Полипептиды входят в структуру белков. Интересно, что первый синтез белка — инсулина, включающего в свою структуру 51 аминокислоту, который был выполнен до матричного синтеза обычным путем, проходил в 221 стадию. Так как выход продукта на каждой стадии никогда не достигает 100%, то выход конечного продукта многостадийного спн-теза очень мал. Кроме того очистка от побочных продуктов, получающихся на каждой стадии, очень трудна. [c.191]

    Роль РНК в процессе синтеза белка была подтверждена опытами, выполненными в начале 60-х годов. Из бактериальных клеток была получена бесклеточная жидкость, содержавшая все необходимые для синтеза белка ферменты, ранее находившиеся в клетке. Эта система была способна в течение некоторого времени осуществлять синтез белка, однако затем он замедлялся. В этот момент добавляли РНК и наблюдали возобновление синтеза белка. Можно было добавить и не природную, а синтетическую РНК синтез белка продолжался и в этом случае. Когда добавка состояла из синтетической РНК, содержащей только один нуклеотид—урацил, образовывался полипептид, состоящий исключительно из фенилаланина. Дальнейшее развитие подобных опытов позволило расшифровать генетический код установить, что каждая аминокислота имеет свои шифры , записанные в виде последовательности трех нуклеотидов. [c.343]

    Тот же самый принцип активации карбоксильной группы используется н в синтезе белков in vivo. Карбоксильная группа аминокислоты активируется, реагируя с АТР с промежуточным образованием ангидрида. Однако следующая стадия не сводится просто к атаке такого ангидрида второй аминокислотой, поскольку синтез белков включает строго определенное последовательное присоединение многих (до нескольких сотен) аминокислот. Матрица, или организующая поверхность , должна участвовать в этом процессе для того, чтобы обеспечить правильную последовательность белковой молекулы. Макромолекулой, выполняющей функцию такой матрицы, является полинуклеотидтранс-портная рибонуклеиновая кислота (тРНК) строение полинуклеотидов описано в следующей главе. [c.56]

    Белки и пептиды —биополимеры ос-аминокислот. Синтез а-аминокислот, )- и -ряды а-аминокислот, их роль в построении молекулы белка. Химические свойства аминокислот. [c.251]

    Особенностью т-РНК является то, что на одном конце цепочки, содержащей всего 80 нуклеотидов, всегда помещается группа из трех частиц двух цитозина и одной аденина на другом конце находится гуанин. Водородные связи между основаниями обусловливают скручивание отдельных участков цепи в двойную спираль. Свободные нуклеотиды взаимодействуют с матрицей, на которой закрепляется совокупность аминокислот во время синтеза белка. Существование таких свободных нуклеотидов, возможно, связано с наличием в т-РНК пуриновых или пиримидиновых оснований, [c.391]


    Аминокислоты, их строение, свойства и значение. Белки как высокомолекулярные природные соединения. Строение белков и их свойства. Проблема химического синтеза белков. [c.224]

    При биологическом синтезе белка в полипептидную цепь включаются остатки 20 аминокислот (в порядке, задаваемом генетическим кодом организма). Среди них есть и такие, которые не синтезируются вообще (или синтезируются в недостаточном количестве) самим организмом, они называются незаменимыми аминокислотами и вводятся в организм только вместе с пищей. Пищевая ценность белков различна животные белки, имеющие более высокое содержание незаменимых аминокислот, считаются для человека более важными, чем растительные белки. [c.230]

    На молекуле РНК, как на матрице, осуществляется синтез белка. Другой тип РНК (РНК-переносчик) доставляет к этой молекуле аминокислоты и располагает их в определенном порядке. РНК-переносчик специфична по отношению к типу аминокислоты, которую она переносит на матричную РНК, и закрепляется на ма  [c.352]

    Сочетание УАА и УАГ не соответствует какой-либо определенной аминокислоте. Это так называемые бессмысленные кодоны . Однако они не вполне лишены смысла. Синтез белка останавливается, когда работа рибосомного аппарата доходит до бессмысленного кодона. Следовательно, они в какой-то степени могут регулировать длину образующихся полипептидных цепей, хотя не вполне ясно, играют ли они эту роль в ходе нормального синтеза белка. Вопрос о прекращении роста цепи РНК важен, так как от механизма, прекращающего синтез на определенном звене, зависит и функция синтезируемого белка. Имеющиеся данные говорят как будто в пользу предположения, что на молекуле м-РНК все же имеются сочетания нуклеотидов, сигнализирующие о начале и конце синтеза цепи. Процесс считывания нормального кода, т.е. синтез нормального белка, может претерпеть нарушения в результате, например, действия некоторых лекарственных веществ (стрептомицин) или под влиянием мутаций. Лекарственные вещества изменяют состояние самой рибосомы, что нарушает ход синтеза. Мутации выражаются в замене правильного триплета каким-либо иным, что приводит к росту числа ошибок при считывании генетического кода. [c.394]

    Последовательность оснований в макромолекуле чрезвычайно важна, поскольку в ней закодированы наследственные признаки и информация для синтеза белков со строго определенной структурой, т. е. белков с определенной последовательностью аминокислот. [c.218]

    Огромное значение белки имеют и для жизнедеятельности растительных организмов, хотя содержание их в растениях значительно меньше. В то же время только в растениях, наряду с синтезом углеводов, осуществляется синтез белков из простых неорганических веществ. Необходимую для этого двуокись углерода (СОа) растения поглощают из воздуха, а минеральные азотистые соединения и воду — из почвы. В животные же организмы белки поступают в готовом виде — с растительной или животной пищей в процессе пищеварения белки под влиянием ферментов расщепляются до а-аминокислот, которые усваиваются, и в тканях также под действием ферментов вновь образуют белки. [c.289]

    Синтез белков. Еще более трудной задачей является синтез белков. Ведь для осуществления его необходимо соединить в определенной, характерной для каждого белка последовательности множество молекул разных аминокислот, и воспроизвести необходимые связи между полипептидными цепями. [c.293]

    Синтез инсулина — замечательное достижение науки. Чтобы осуществить его, потребовалось последовательно провести 223 реакции. Удалось соединить в точно определенном порядке все остатки а-аминокислот, образующих молекулу инсулина (а их 51 ). Работа продолжалась три года. Таким образом, подтвердилась правильность материалистических представлений о принципиальной возможности синтеза белков вне организма. И несомненно, что с развитием науки будут осуществлены синтезы еще более сложных белковых веществ. [c.294]

    В перспективе химия способна, однако, обеспечить потребность человечества в аминокислотах (и белках) и вообще в пище более прямым путем, непосредственным синтезом. [c.339]

    В этом процессе ДНК играет роль матрицы , с которой отпечатываются копии молекул РНК, непосредственно участвующих в синтезе белка, — такой вид РНК называется информационным. Наряду с ними в процессе синтеза белка участвуют транспортные РНК, каждая из которых специфично связывается с определенной аминокислотой и доставляет ее к нужному месту информационной РНК, после чего остатки аминокислот соединяются пептидной связью, образуя молекулу белка. [c.353]

    Применение. Аминокислоты, преимущественно а-амино-кислоты, необходимы для синтеза белков в живых организмах. Нужные для этого аминокислоты человек и животные получают в виде пищи, содержащей различные белки. Последние в пищеварительном тракте подвергаются расщеплению на отдельные аминокислоты, из которых затем синтезируются белки, свойственные данному организму. Для этой цели успешно используются также искусственно выделенные или синтезированные аминокислоты. Некоторые из них применяются в медицинских целях. Многие аминокислоты служат для подкормки животных. [c.11]

    Глубокий распад аминокислот, их диссимиляция, имеет место не только при нормальном питании, когда они образуются в результате переваривания белков. Распад аминокислот, правда в меньшем объеме, происходит также при низком содержании и даже при отсутствии белков в пище. Известно, что при безбелковом питании из организма с мочою выделяют конечные продукты азотистого обмена, освобождающиеся в результате превращений аминокислот. Следует также учесть, что часть аминокислот, образующаяся при распаде тканевых белков, используется для синтеза ряда азотистых соединений, входящих в состав тканей. Так, например, для синтеза креатина (стр. 403) используются глицин, аргинин и метионин (последние две аминокислоты относятся к числу незаменимых аминокислот) карнозин и ансерин синтезируются (стр. 409) из незаменимой аминокислоты гистидина. Аминокислоты используются также для синтеза гормонов белковой природы (инсулина, глюкагона, гормонов гипофиза и др.). Адреналин и тироксин синтезируются из незаменимой аминокислоты фенилаланина. Следовательно, некоторая часть аминокислот, образующаяся в результате распада белков тканей в организме при недостатке или отсутствии белков в пище, расходуется на синтез различных биологически важных веществ Часть незаменимых аминокислот постоянно расходуется как при нормаль ном питании, так и при белковом голодании. В последнем случае, т. е при белковом голодании (само собой разумеется, что и при полном голо Дании) должен ощущаться недостаток в незаменимых аминокислотах Между тем для синтеза подвергающихся распаду тканевых белков, необхо димо наличие полного набора всех аминокислот в соответствующих количе-ствах. При недостатке, а тем более при отсутствии тех или иных незаменимых аминокислот, синтез белков тканей уменьшается или вовсе прекращается. Следовательно, аминокислоты, образующиеся в процессе распада тканевых белков при голодании, если не полностью, то в значительной мере, не могут быть использованы для синтеза белков и подвергаются распаду с освобождением конечных продуктов аммиака, углекислого газа и воды. При наличии белков в пигце избыточное количество аминокислот, всасывающееся [c.343]

    V. Н-Аминокислоты. Синтез белка можно рассматривать как незаменимый метаболический процесс, без которого клетка теряет жизнеспособность, поэтому включение аминокислот в белки успешно используется в качестве оценки цитотоксичности. Наиболее распространены исследования клеток, растущих в монослое в лунках микротитровальных пластинок. В этом случае можно оценивать включение Н-лейцина [29] с помощью жидкостного сцинтилляционпого счетчика или включение S-метионина с помощью радиоавтографии [43]. [c.273]

    Однако катализаторы, способные проводить ресинтез белков из 2-аминокислот или дикетопиперазинов вне организма, до сих пор не открыты. В этом направлении проводились работы, из которых интерес представляют исследования А. Я. Данилевского [59]. Он действием протеолитических ферментов вне клеток получил своеобразные продукты ресинтеза—не растворимые в воде пластеины, которые не дают, однако, ни одной из характерных реакций на белки и природа которых до сих пор не установлена. Интерес в этом отношении представляют работы С. Е. Бреслера [60] с сотрудниками, которые осуществили обратный синтез белков, применив высокие давления порядка 5000—6000 ат. Эту стадию процесса С. Е. Бреслер назвал ресинтезом белков. Ему впервые удалось установить, что схематическая реакция [c.507]

    Такова в общих чертах схема синтеза белка in vivo некоторые детали, например роль белковых факторов элонгации, опущены. Очевидно, что синтез белка — очень сложный процесс его основу составляет активация карбоксильной группы с последующим упорядоченным присоединением аминокислот на наирав-ляющей (организующей) матрице, которая делает практически невозможным образование неправильной последовательности или другие побочные реакции. Важное значение этих соображений станет ясным в дальнейшем, прн кратком рассмотрении проблем химического синтеза белков. Тем не менее, имея представление о синтезе белка in vivo, можно оценить фармакологическое действие лекарств или антибиотиков, которые нарушают белковый синтез. Такие антибиотики, вообще говоря, токсичные соединения, поскольку нарушают синтез белка и у болезнетворных бактерий, и у пациента, однако и ош1 могут оказаться весьма полезными терапевтическими препаратами. [c.60]

    Генетическая информация передается от родительской клетки к дочерней путем репликации (синтеза) ДНК- Генетическая информация сохраняется в ДНК до тех пор, пока не понадобится, а затем превращается в инструкцию по синтезу белка специфической последовательности в процессе транскрипции. Генетическая инструкция переписывается на полимерную молекулу РНК (мРНК). Она в свою очередь взаимодействует с соответствующими специфическими амииоацил-тРНК, в результате чего происходит последовательное присоединение аминокислот. Перевод генетической информации из РНК в специфическую аминокислотную последовательность называется трансляцией. [c.108]

    Нетрудно видеть, что в тонком механизме репликации и синтеза белков произвол в расположении частиц сведен к минимуму. Этот матричный процесс является низкоэнтропийным. Ошибки в размещении аминокислот в пептидных цепочках составляют по приблизительной оценке 1 на 10 . В то же время, если бы синтез белков происходил на примитивной матрице, на которой концентрация тех или иных компонентов и их относительное расположение в значительной мере определялись бы случайностями окружающей обстановки, нельзя было бы ожидать воспроизводимости синтеза того или иного белка и, в частности, того белка, от структуры ко- [c.393]

    Синтез РНК связан с количеством транспортной т-РНК, т. е. РНК переносящей аминокислоты. Если концентрация молекул т-РНК, не имеющих нагрузки, возрастает, то синтез РНК задерживается. Действие этого поразительного механизма уже само по себе указывает на постоянную пространственную близость всех деталей аппарата, синтезирующего белок. В действительности так оно и есть, ведь синтез белка протекает в рибосомах, т. е. в организованных частицах клетки. Число структур, образуемых мембранами, не исчерпывается, конечно, митохондриями и рибосомами. Ядро клетки, лизосомы, аппарат Гольджи и другие органел-лы также построены из мембран они же послужили и материалом для создания нейронов — элементов нервной системы, в том числе и мозга, выполняющего высшие кодовые функции. [c.395]

    Продолжая свои опыты, упомянутые авторы стали добавлять не природную, а синтетическую РНК, синтез белка продолжался и в этом случае. Когда добавка состояла нз синтетической PHKi содержащей только один нуклеотид, а именно урацил, образовывался пептид, состоящий почти исключительно из фенилаланина. Даль-нейн1ее развитие подобных опытов позволило сделать большие успехи в расшифровке генетического кода — определить, как именно в молекуле РНК записан приказ включать в молекулу белка определенные аминокислоты. Считают, что каждая аминокислота имеет свой шифр , записанный в виде последовательнос- [c.351]

    Превращение белков в организме. В организмах животных и человека под влиянием ферментов (пепсина, трипси--на, эрепсина и др.) происходит гидролиз белков. В результате этого образуются аминокислоты, которые всасываются ворсинками кишечника в кровь и используются для образования белков, специфических данному организму. Синтез белков идет с поглощением энергии. Эту энергию доставляют молекулы АТФ. (Повторите из учебника Общая биология 42.) В организме одновременно с синтезом белков непрерывно происходит и полное их разрушение, вначале до аминокислот, а затем до оксида углерода (IV), аммиака, мочевины и воды. При этих процессах выделяется энергия, но Б меньшем количестве, чем при распаде углеводов и жиров. [c.21]


Смотреть страницы где упоминается термин Аминокислоты в синтезе белка: [c.57]    [c.86]    [c.328]    [c.161]    [c.158]    [c.58]    [c.92]    [c.144]    [c.4]    [c.197]    [c.256]    [c.11]   
Молекулярная биология клетки Том5 (1987) -- [ c.7 , c.11 , c.12 , c.13 , c.14 , c.15 , c.16 , c.76 , c.127 , c.128 , c.129 , c.130 , c.131 , c.132 , c.133 ]




ПОИСК







© 2025 chem21.info Реклама на сайте