Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Очистка газов глубоким охлаждением

    В результате первичной обработки природного и попутного газов наиболее чистый газ получают при его фракционировании методом глубокого охлаждения. Углеводороды и выше можно выделять также абсорбцией высококипящими углеводородами или адсорбцией активированным углем. Однако в процессе абсорбции газ загрязняется парами абсорбента, а технологическое оформление адсорбционных методов, обеспечивающих тонкую очистку, применительно к данной задаче является относительно громоздким. Поэтому из всех возможных случаев очистки природного газа от высших углеводородов ниже будут рассмотрены грубая очистка методом конденсации тяжелых углеводородов с использованием вихревого эффекта и очистка методом каталитического деструктивного гидрирования. [c.104]


    Функциональная схема ХТС производства этилена из бензина изображена на рис. 6.6. Бензин и рециркулирующий этан поступают на пиролиз. Продукты пиролиза (пирогаз) направляются на стадию первичного фракционирования, где легкая и тяжелая смолы отделяются от газа пиролиза. Последний направляется на компримирование (сжатие компрессором). Газ пиролиза очищают от сероводорода и диоксида углерода, одновременно отделяются тяжелые фракции (С5 и выше). После осушки газ пиролиза поступает на разделение. В современных установках перед разделением газ подвергают глубокому охлаждению и выделяют водород и метан. Этан-этиленовая фракция подвергается очистке от ацетилена методом селективного гидрирования и разделяется на этилен с концентрацией 99,9% и этан. Последний возвращается на пиролиз. [c.353]

    Таким образом, процесс Ректизол очень экономичен [271], однако недостаток его заключается в относительной громоздкости технологической схемы. -Этот процесс наиболее целесообразен для очистки газов, содержаш иА большое количество разнообразных примесей, и позволяет упростить существуюш,ие многоступенчатые схемы очистки таких газов, как коксовый. Процесс Ректизол эффективен также в тех случаях, когда в технологическую схему входит стадия глубокого охлаждения, например при промывке жидким азотом коксового или конвертированного газа. Поэтому сочетание этого процесса очистки со стадией умеренного охлаждения позволяет уменьшить обилие капитальные и энергетические затраты на очистку газа от Oj и промывку его жидким азотом. [c.277]

    X ек Д. М., Очистка газов глубоким охлаждением. Инженер-нефтя- [c.243]

    Считается, что этот метод целесообразно сочетать с методом очистки водорода глубоким охлаждением, получая на установках сначала газ, содержащий 70—80% водорода, а из него очисткой на палладии — водород очень высокой степени чистоты — до 99,995% [72]. [c.38]

    Внезапное изменение состава газа и во многих других процессах приводит к взрывам в аппаратуре. Описаны аварии, связанные с внезапным и значительным повышением содержания оксидов азота в коксовом газе, поступающем на очистку методом глубокого охлаждения. В этом случае происходит быстрая конденсация оксидов азота в смеси с органическими [c.83]

    Максимально возможное снижение температуры очищаемых газов пиролиза положительно сказывается как на эффективности работы пенного аппарата, так и на эффективности электрофильтра, обеспечивая тем самым необходимую степень очистки всей установкой. Кроме того, глубокое охлаждение газов пиролиза позволило исключить из схемы пенный аппарат — теплообменник, устанавливаемый ранее за электрофильтром. [c.275]


    В связи с значительным увеличением масштабов производства химической продукции большее внимание стали уделять разработке непрерывных процессов. В этот период начинает развиваться техника низких температур и высоких давлений. Разрабатываются такие процессы, как глубокое охлаждение (1895 г.), электрическая очистка газов (1906 г.), появляются фильтры непрерывного действия (1904 г.). [c.16]

    Следует отметить, что для разделения газовых смесей, очистки газов и улавливания ценных компонентов наряду с абсорбцией применяют и иные способы адсорбцию, глубокое охлаждение и др. Выбор того или иного способа определяется технико-экономическими соображениями. Обычно абсорбция предпочтительнее в тех случаях, когда не требуется очень полного извлечения компонента. [c.12]

    Динамический газ, насыщенный парами десорбированного продукта, подвергают глубокому охлаждению и выделяют сконденсировавшиеся продукты. Перед сбросом в атмосферу охлажденный газ пропускают через колонну с адсорбентом для очистки от остаточных органических продуктов. [c.197]

    Неочищенный газ подается в сепаратор 5, где отделяются вода и конденсат, затем газ направляется в два адсорбера - А-1 и А-3 (рис. У-7, а), в которых проходит адсорбция влаги сероводорода и тяжелых углеводородов. Очищенный газ через фильтр 72 уходит в газопровод. Часть очищенного газа (5... 15%) направляется в адсорбер А-2 для охлаждения регенерированного цеолита, затем поступает через фильтр б и теплообменник 9 в печь 8. Горячий газ направляется в адсорбер А-4 для регенерации адсорбента. При регенерации из цеолита извлекаются пары воды, сероводород и другие газы. Из адсорбера газ поступает через фильтр 7, теплообменник 9 и холодильник 10 в сепаратор в котором из газа отделяются вода и тяжелые углеводороды. Из сепаратора газ направляется на аминовую очистку от сероводорода. После насыщения цеолита в адсорбере 3 поток неочищенного газа переводится в аппарат 2 и работа установки продолжается согласно циклограмме. Преимущество цеолитовой очистки - одновременно очистка и глубокая осушка газа, процесс исключает возможность попадания каких-либо реагентов в газопровод. Как недостаток следует отметить необходимость установки аминовой очистки газа регенерации от сероводорода. [c.197]

    Процесс эффективен также при совместной тонкой очистке от двуокиси углерода и меркаптанов, например, коксового газа. При гидрировании ацетилена и окиси азота (см. главу IX) сернистые соединения, присутствующие в коксовом газе, превращаются в меркаптаны поэтому перед глубоким охлаждением необходима очистка газа от этих веществ. [c.338]

    Промышленный генератор СО2 позволяет получать при сжигании чистых (неодоризованных) СНГ чистый углекислый газ исключительно простым способом. При окислении СНГ при избыточном количестве воздуха образуется смесь СО2, паров воды и азота, которая может сразу же компримироваться и вдуваться непосредственно в напиток, так как пары воды конденсируются, а азот, обладающий меньщей, чем СО2, растворимостью, пройдет через жидкость, не абсорбируясь. При другом способе получения СО2 накапливается за счет абсорбции в одном из многочисленных селективных растворителей (моноэтаноламин, модифицированный карбонат калия, некоторые аминоспирты, сульфинол и т. п.), а затем регенерируется в виде концентрированного газа из растворителя. Дальнейшая очистка осуществляется при глубоком охлаждении (СО2 затвердевает при —78,5 °С, при этом отделяется большая часть газообразных примесей, имеющих более низкую точку кипения). Твердая двуокись углерода (сухой лед) используется для газирования напитков, в частности в тех случаях, когда масштабы розлива по бутылкам невелики, а организация местного производства СО2 неэкономична. [c.272]

    Очищенный газ при температуре минус 45 — минус 50 °С направляется на дальнейшее охлаждение и промывку жидким азотом для очистки от окиси углерода. Обратный очищенный газ из блока глубокого охлаждения очистки от СО проходит теплообменник и охлаждает увлажненный метанол, циркулирующий через холодильную башню. [c.281]

    Изложены [10, 12] теоретические основы технологии соединений азота с обработкой больших объемов газа под повышенным давлением, в том числе разделения газов при глубоком охлаждении полной очистки от примесей и каталитического превращения абсорбции конденсации использования энергии реакций и сжатого газа. Рассмотрено использование [61, 108, 136] азотной кислоты и аммиака в процессах азотнокислотного разложения фосфатов и при аммони-зации кислот с анализом равновесия и пересыщений в многокомпо-нентных системах скоростей растворения и кристаллизации превращений и тепловых эффектов при нейтрализации выведения примесей и т, д. [c.5]

    Удаление воды, углекислого газа и других загрязнений (возможны пары масел) производится с помощью поглощающих веществ (СаО/ЫаОН Р Ою), адсорбентов (молекулярных сит) или глубокого охлаждения (в охлаждаемом змеевике). Для удаления последних следов кислорода имеются специальные массы для очистки газов, применяемые уже при комнатной температуре и понижающие содержание кислорода ниже предела обнаружения. [c.482]


    На некоторых предприятиях требуется улучшить технические средства осуществления процессов димеризации ацетилена на медьсодержащем катализаторе сушки ацетилена твердым каустиком ксантогенирования целлюлозы очистки воздуха от ацетилена и других углеводородов в воздухоразделительных установках грануляции расплава транспорта карбида кальция компримирова-ния и транспортирования по трубопроводам, факельным и вентиляционным системам взрывоопасных газов хранения взрывоопасных газов в газгольдерах и сжиженных углеводородных газов в сборниках , глубокого охлаждения и конденсации газовых смесей, сопровождаемых образованием в жидкой или газообразной фазе [c.8]

    В практике применяются различные методы очистки конвертированного газа 1) адсорбция примесей твердыми сорбентами, 2) абсорбция жидкими сорбентами, 3) конденсация примесей глубоким охлаждением, 4) каталитическое гидрирование. [c.238]

    Очистка методом конденсации с применением глубокого охлаждения получила распространение при получении водорода из коксового газа (см. стр. ООО). [c.239]

    В процессах разделения и очистки газов методом глубокого охлаждения широкое распространение нашли весьма эффективные и компактные витые змеевиковые теплообменники. [c.431]

    Хороших поглотителей для газов парафинового ряда пока не найдено высшие члены ряда тем не менее можно адсорбировать на активированном угле или удалить методом глубокого охлаждения. Относительно очистки и разделения этих газов приведены данные на стр. 490. [c.339]

    За рубежом известно несколько схем переработки синтез газа, отходящего из производства ацетилена, для получени метанола, аммиака и других веществ. Это — парокислородна или паровоздушная конверсия остаточного метана в шахтны реакторах [17], паровая конверсия в трубчатых печах с дозиро ванием диоксида углерода [18—20]. Широко применяется раз деление компонентов методом глубокого охлаждения [21—23] при этом выделяется этилен, метан и фракция (Нг+СО). Ре комендуют также проводить очистку синтез-газа гидрирование непредельных соединений и кислорода на катализаторах, со держащих серебро [24]. Все схемы, как отечественные, так 1 зарубежные в аппаратурном оформлении громоздки и, соот ветственно, имеют большие капитальные затраты. [c.32]

    Разделение коксового газа. Метод фракционированной конденсации с применением глубокого охлаждения используют для разделения коксового газа, а также для очистки конвертированного газа от оксида углерода после парокислородной конверсии метана. Разделение коксового газа конденсацией его компонентов служит одним из методов получения водорода или азотоводородной смеси. Попутно выделяют этиленовую и метановую фракции, а также фракцию оксида углерода. Эти побочные продукты служат сырьем для органического синтеза. [c.77]

    Абсорбцию двуокиси углерода применяют для очистки газов от СО3 (например, в производстве синтетического аммиака или при разделении глубоким охлаждением воздуха и углеводородных газов) или для получения высококонцентрированной СОз (например, в производстве сухого льда). Абсорбцию СОз аммиачным раствором Na l проводят в производстве соды. [c.678]

    Получают А в результате воздуха разделения при глубоком охлаждении Обогащенная А смесь, содержащая до 40% О2, подается на разделение в колонну В результате получают 95%-ный А, степень извтечения достигает 0,75-0,80 Датьнейшая очистка от Oj осуществляется гидрированием в присут платинового кат при 333-343 К, а от Ni-низкотемпературной ректификацией Применяется также адсорбц метод очистки (от О2, Н2 и др благородных газов) с использованием активного угля или молекулярных сит А может быть получен и как побочный Продукт из продувочных газов в колоннах для синтеза NH3 [c.194]

    Тем не менее в ряде случаев абсорбционные процессы являются высокоэффективными при переработке природных и нефтяных газов например, при наличии в сырье парафинистых углеводородов с высокими температурами застывания. Охлаждение такого газа до более низких температур может вызвать осложнения в работе газоперерабатывающих установок. В тО же время, подбирая соответствующие абсорбент и режим процесса, можно достичь глубокого извлечения целевых компонентов из газа при плюсовых температурах. Абсорбция эффективна при эксплуатации газоконденсатных месторождений сайк-линг-процессом в этом случае процесс можно вести под давлением 10—12 МПа, что позволит достичь экономию энергии на дожатие сухого газа при закачке его в пласт [142], а также для тонкой очистки газа (на Оренбургском ГПЗ процесс низкотемпературной абсорбции используется для тонкой очистки газа от тиолов). [c.191]

    В некоторых случаях возможно применение весьма летучих абсорбентов (водные растворы аммиака, метанол). Это бывает оцрав-дано только при понижении температуры абсорбции или повышении давления, особенно в сочетании с конкретной схемой производства. Так, абсорбция холодным метанолом проводится при —50 °С (см. гл. IV), а очищенный газ поступает в блок глубокого охлаждения. В ряде случаев при очистке газа от микропримесей растворами, содержащими аммиак, очищенный газ поступает на синтез аммиака. [c.42]

    Тонкая очистка газа от двуокиси углерода необходима в технологических установках с глубоким охлаждением, например при промывке газа от окиси уЛхерода жидким азотом в производстве аммиака, при разделении воздуха, коксового и других газов. [c.418]

    КОЙ очистки газа остальное количество раствора (20-30 %) дополнительно охлаждается в воздушном или водяном холодильнике и подается на верх абсорбера. Указанная схема с двумя потоками регенерированного раствора реализована на Оренбургском ГПЗ. Такая схема позволяет снизить эксилуатационные затраты, поскольку глубокому охлаждению подвергается только часть раствора. [c.295]

    Очистка газов предусматривает удаление из промышленных или природных газов вредных и балластных прпмесей с том, чтобы очищенный газ был пригоден для трансиор-тирования, дальнейшей химической переработки и непосредственного использования. Газы очпщают от примесей, которые отравляют катализаторы, ухудшают качество продукции, вызывают коррозию п загрязнение аппаратуры. В ряде случаев, главным образом в процессах глубокого охлаждения, газ необходимо очищать от взрывоопасных примесей (например, удалять ацетилен при разделении воздуха, окись азота при разделении коксового газа, кислород при сжижении водорода). [c.213]

    Наиболее рационально применение низкотемпературной абсорбции для очистки газов, перерабатываемых при помощи глубокого охлаждения, когда газ все равно необходимо подвергать охлаждению. Так, в азотной промышленности очистка методом низкотемпературной абсорбции удачно сочетается с промывкой газа жидким азотом для удаления окиси углёрода и метана. [c.278]

    Очистка 0 , хранящегося в стальных баллонах. Продажный Oj, в стальных баллонах может содержать следующие примеси водяные пары, СО, Ог, Nj, реже следы H2S и SO . В большинстве случаев степень чистоты продажного Oj достаточна для проведения химических реакций. Только при более высоких требованиях (например, при физических исследованиях) продажный СО2 надо подвергать дополнительной очистке. Для этого газ пропускают через насыщенный раствор USO4, затем через раствор КНСОз и, наконец, через установку для фракционирования [2], которая является частью промышленной установки для получения чистого HjS (см. т. 2, рис. 174). Для фракционирования Oj используют четыре вертикально расположенные промывалки, восемь U-образных трубок для глубокого охлаждения и две ловушки-вымораживателя. Перед последним вымораживателем имеется еще ответвление к ртутному манометру. Oj проходит первые четыре U-образные трубки для глубокого охлаждения (выдерживаемые при указанной температуре) и вымораживается в 8. Когда 8 наполняется, открывают кран 9, отпаивают в точке 10 и создают в этой части аппаратуры высокий вакуум. После этого охлаждают остальные четыре U-образные трубки до —78 °С (сухой лед-f--t-ацетон), снимают охлаждение жидким воздухом с 8, откачивают первый погон газа, а затем уже погружают в сосуд для конденсации 11 в жидкий воздух. Средняя фракция собирается в 11, а остаток — в 8. Фракцию из 11 еще дважды сублимируют и контролируют чистоту газа, определяя давление упругости пара при различных температурах. Газ хранят в 25-литровых стеклянных колбах, которые обезгаживают путем многочасового нагревания в высоком вакууме при 350 °С. [c.682]

    Криогенная очистка. В основе криогенной очпстки лежит метод глубокого охлаждения смеси газов. При температуре кипения жидкого азота 77 К (—196 С) конденсируются все углеводороды в водородсодержащей-ся газовой смесн. Несконденсировавшийся газ (водород) отделяется от конденсата в сепараторе и подается на турбокомпрессоры для закачки в баллоны или в установку для получения жидкого волюрода. Чистота водорода, полученного таким методом, может быть 99,99% (об.). Однако экономические и энергетические затраты при использовании криогенной очистки достаточно велики. [c.383]

    Источником получения гелия являются природные газы. Для эксплуатируемых месторождений характерно высокое содержание гелия — от 0,9 до 5,7 мол. %. Помимо гелия природные газы обычно содержат 10-30 мол. % азота, а также метан и незначительные примеси менее летучих углеводородов, углекислоты, влаги, сероводорода, водорода. Так как гелий наиболее летучий из известных газов, то его получение сводится к конденсации всех остальных компонентов смеси и окончательной очистке методом низкотемпературной адсорбции. Извлекается гелий методами глубокого охлаждения, причем процесс осуществляется в две стадии получение так называемого сырого гелия и последутощая его очистка. В таблице 8.28 указан средний состав природного газа, поступающего на переработку, а также состав переработанного газа после извлечения из него гелия. [c.916]

    В системе очистки коксового газа в конденсаторах глубокого охлаждения накапливаются взрывоопасные продукты осмоления, образующиеся при взаимодействии непредельных углеводородов с окгидами азота, нзходящяшкся б незначительных количествах. Накопление таких смол в аппаратуре допускается не более 5 кг, что соответствует тротиловому эквиваленту, равному 1 кг. [c.80]

    Конденсационно-ректификационный метод разделения газов отличается от абсорбционно-ректификационного метода применением более глубокого охлаждения (—100— 110° С) и более высокого давления (35—40 атм.). Оонов ные углеводородные компоненты газа по этому методу переводятся в жидкое состояние без применения абсорбента. В остальном (подготовка газа к разделению, ректификация, очистка, осушка и др.) этот метод практически не отличается от абсорбционного. [c.71]


Смотреть страницы где упоминается термин Очистка газов глубоким охлаждением: [c.353]    [c.38]    [c.49]    [c.85]    [c.86]    [c.247]    [c.679]    [c.558]    [c.390]    [c.365]    [c.608]    [c.8]    [c.123]   
Основные процессы и аппараты Изд10 (2004) -- [ c.665 ]

Основные процессы и аппараты химической технологии Издание 8 (1971) -- [ c.705 ]




ПОИСК







© 2025 chem21.info Реклама на сайте