Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Классификация процессов гидрирования

    МЕТОДЫ ПОЛУЧЕНИЯ ВОДОРОДА И КЛАССИФИКАЦИЯ ПРОЦЕССОВ ГИДРИРОВАНИЯ [c.789]

    В химической технологии физические процессы уже прошли такое развитие. Процессы физического разделения достаточно полно охватываются сложившимися разделами химической технологии в отличие от систематизации химических реакторов систематизация физических процессов близка к совершенству. Классификация процессов по чисто химическим признакам (окисление, гидрирование и т. и.) имеет некоторые преимущества для технологии органических веществ. Она, однако, неудобна для систематического изучения химических реакторов, поскольку другие факторы, такие, как тепловые эффекты и условия перемешивания и диспергирования, в равной степени определяют работу реактора. Поэтому последовательность изложения, принятая в этой книге, в основном базируется на учете физических факторов. [c.10]


    Методы получения водорода и классификация 789 процессов гидрирования [c.13]

    Твердые катализаторы применяют в жидкой среде гораздо реже, чем в газовой. Однако в органической технологии имеется ряд крупномасштабных процессов гидрирования тяжелых углеводородов и жиров в жидкой фазе на металлических или сульфидных катализаторах, а также процессы дегидрирования, окисления, полимеризации и т. п. [2, 7—9, 18, 36]. Рассмотренные выше классификация и закономерности процессов в газовой фазе на твердых катализаторах в основном относятся и к жидкофазным процессам с учетом их специфики, однако гетерогенный катализ в жидкостях изучен в меньшей степени, чем в газах. [c.48]

    Справочник был задуман В. А. Ройтером как первая ступень в создании научной теории предвидения каталитического действия и решении задачи рационального подбора катализаторов. В литературе кроме обширнейшего фактического материала о свойствах катализаторов и протекающих реакций имеется большое число обзоров, обобщений по отдельным типам реакций, например по процессам гидрирования, дегидрирования, дегидратации, окисления, алкилирования, крекинга и др. В этих обзорах основное внимание обращено на механизм протекания реакций, кинетику, влияние различных факторов на свойства наиболее распространенных катализаторов, приготовление промышленных контактов и т. п. Однако до сих пор не предпринималась даже попытка систематизировать и тщательно проанализировать весь имеющийся материал с единой точки зрения, чтобы таким путем попытаться выяснить наиболее общие закономерности катализа и создать рациональную систему классификации в катализе. [c.5]

    Согласно зтой классификации, катализаторами реакций гидрирования, восстановления, окисления и т.п. процессов являются переходные металлы и их соединения, т.е. они включают элементы переменной валентности, изменяющейся в ходе протекания каталитического акта. Отсюда и возникло название данной группы реакций как окислительно-восстановительных. [c.3]

    В изучении этих химических процессов или, иными словами, в развитии химической технологии отдельных веществ и продуктов, например, синтетического аммиака, каучуков, пластических масс, черных, цветных и редких металлов, стекла, цемента и т. п., достигнуты огромные успехи. Эти успехи обусловили технический прогресс соответствующих отраслей промышленности. Однако научная классификация химических процессов продолжает оставаться одной из важных задач химической технологии как науки. По аналогии с классификацией физических и физикохимических процессов химической технологии делаются попытки классифицировать промышленные химические реакции по основным химическим процессам . Так, предлагалась следующая классификация химических процессов обменное разложение и солеобразование (минеральные удобрения и соли), окисление (серная кислота, азотная кислота, органические кислородные соединения и др.), гидрирование (аммиак, метанол и другие спирты, аминосоединения ароматического ряда, получаемые гидрированием нитросоединений, и т. п.), аминирование (мочевина, аминосоединения жирного и ароматического рядов), хлорирование (химические средства защиты растений), нитрование (взрывчатые вещества), сульфирование (синтетические моющие вещества), электрохимические процессы (электролиз водных растворов, электролиз в расплавленных средах, электрохимическое окисление и восстановление), процессы высокотемпературного и каталитического крекинга и пиролиза жидкостей и газов (нефтепереработка, получение олефинов из природных газов и др.), процессы полимеризации и поликонденсации (получение пластических масс, синтетических каучуков, химических волокон), процессы высокотемпературной переработки твердых тел (коксование углей, производство карбида кальция, стекла, цемента, сернистого натрия), алкилирование и арилирование и т. д. [c.138]


    Единой классификации хим. процессов нет. Их можно классифицировать по разл. признакам 1) по сырью 2) по потребительскому или товарному признаку (напр., произ-во удобрений, красителей, лек. препаратов) 3) по фуппам периодич. системы элементов 4) по типам хим. р-ций (окислит.-восстановит. процессы, гидрирование, хлорирование, циклизация, аммонолиз и т.п.) 5) по фазам (гомогенные жидкофазные и газофазные процессы, гетерог. процессы в системах жидкость - газ, газ - твердое тело и т. п.). В подобного рода классификациях слово технология нередко употребляется в более узком смысле (напр., технология неорг. в-в, аммиака, азотной к-ты, металлов, угля, нефти). В связи с этим X. т. подразделяется на две части - общую, являюи1уюся фундаментом этой науки, и специальную, соответствующую отраслям пром-сти с учетом их специфики. [c.238]

    Обе двойные связи должны гидрироваться одновременно, а кривая гидрирования по форме должна напоминать кривую гидрирования смеси однородных по степени замещения моноэтиленовых веществ. Если прервать процесс гидрирования после присоединения одной молекулы водорода, то продукты гидрирования должны представлять собой смесь исходного диена, моноолефинов (продуктов присоединения водорода в положении 1,2 и 3,4) и вполне насыщенного вещества. Среди продуктов неполного гидрирования должны отсутствовать продукты присоединения водорода в места 1 и 4 сопряженного диена. Примером вещества этого типа можно считать дипропенил действительно, кривая гидрирования дипропенила в присутствии платиновой черни имеет, по Лебедеву, перелом в точке, где присоединилось 70% водорода, однако подробного анализа продуктов реакции, на основании которого можно было бы с полной уверенностью отнести дипропенил к типу II или типу IVB, Лебедев не приводит. Таким образом, как уже было сказано выше, все исследованные Лебедевым вещества должны быть отнесены к типу II предложенной им классификации диенов, так как присоединение водорода к ним в присутствии платины происходит во всех возможных направлениях. [c.575]

    Однако и эта классификация не в состоянии отразить ту строгость и общность, которые присущи классификации физических и физико-хими-ческих процессов химической технологии, и даже уступает классификации по отраслевому принципу, так как отдельные группы основных химических процессов объединяют подчас совершенно разные по своей сущности промыпгленные процессы. Так, например, трудно установить аналогию между процессами окисления металлов и окислением сернистого газа или окислением углеводородов в жидкой фазе. Еще труднее установить общее в технике производства и методах проведения процессов гидрирования азота с получением аммиака и гидрирования нитросоединений или жиров. Так же мало общего в химизме процессов коксования углей и производства карбида кальция или сернистого натрия. [c.138]

    Институтом катализа СО АН СССР разработана классификация промышлен-ых катализаторов по их назначению (по виду процесса, для которого предназначен анный катализатор). Согласно этой классификации катализаторы подразделяют на руппы 1) катализаторы синтеза на основе неорганических веществ 2) катализато-ы синтеза (превращений) органических соединений 3) катализаторы гидрирования, дегидрирования 4) катализаторы производства мономеров синтетического каучу-а 5) катализаторы полимеризации и конденсации 6) катализаторы окисления  [c.3]

    По Г. К. Борескову реакции гидрирования ненасыщенных соединений (олефинов, бензола, фенола, анилина) и гидрогенолиз связей углерод—гетероатом (обычно С—8) относят к группе гомо-литических каталитических реакций, в то время как реакции изомеризации и расщепления — к группе гетеролитических. Это не строгая классификация и есть группа процессов, в том числе и промышленно важных, в которых наблюдаются и гомолитический, и гетеролитический катализ К ним, в частности, относятся процессы каталитического риформинга и гидрокрекинга, осуществляемые на нолифункциональных катализаторах. [c.114]

    Процесс ведут в полочном реакторе с несколькими неподвижными слоями катализатора или в трехфазном реакторе, обычно в жидкой фазе, причем значительные количества анилина возвращают в реактор для теплоотвода. Хотя эта реакция в нашей классификации не отнесена к селективному гидрированию, ее следует проводить так, чтобы при гидрировании нитрогруииы не затрагивалось бензольное кольцо. Гидрирование кольца идет довольно легко и сопровождается выделением большого количества тепла. Для предотвращения этой реакции следует избегать повышенных температур, особенно в присутствии активного никелевого катализатора. Температуру нужно поддерживать на сравнительно низком, предварительно выбранном уровне, а перемешиванием необходимо обеспечить равномерное распределение катализатора и водорода в реакторе, чтобы устранить местные перегревы. Можно использовать реакторы, показанные на рис. 2 и 4. [c.119]

    Логично классифицировать каталитические процессы газоочистки по типу протекающих реакций окисление, гидрирование, гидролиз и т. д. Однако четко провести такую классификацию не всегда возмон1но, так как одновременно протекают различные реакции и весьма трудно установить, какая именно реакция преобладает. Поэтому обычно процессы различают но удаляемым примесям или но характеру химичесх ой реакции. Именно этот не всегда последовательный принцип и принят при дальнейшем изложении материала. Важнейшие применяемые в промышленности процессы каталитической очистки газа охватывают а) превращение органических сернистых [c.317]


    Для общей ориентации в подборе катализаторов полезна классификация каталитических процессов по механизму действия катализаторов. Так, согласно С. 3. Рогинскому [6, 7], большинство каталитических реакций можно разделить на два типа — окислительно-восстановительные (электронные) и кислотно-основные (ионные). Реакции окисления, восстановления, гидрирования, дегидрирова- [c.6]

    НО, ДО образования двух диастереомерных переходных состояний. Таким образом, дифференциация энантиофасных сторон двойной связи происходит при подходе прохиральной молекулы к поверхности катализатора путем ее ориентации в результате взаимодействия с молекулой модификатора, находящегося на поверхности катализатора и придающего ему энан-тиофасные дифференцирующие свойства . Эта точка зрения основывается на предположении авторов, что процесс дифференциации , т. е. возникновение хиральности в продукте, никак не связан с самой химической реакцией. Подтверждение этому авторы находят в весьма ограниченном полученном ими экспериментальном материале по энантиоселективному гидрированию метилацетоацетата на никелевом скелетном катализаторе, предварительно модифицированном оптически активными комплексообразующими соединениями (аминокислоты, оксикислоты). В нескольких сериях опытов они не наблюдали связи между оптической чистотой образующегося метил-р-оксибутирата и начальной скоростью реакции. Однако это наблюдение не было достаточно надежно подтверждено и противоречило многочисленным данным других авторов, установивших существование антибатной зависимости между общей скоростью процесса и скоростью образования избытка энантиомера. Такая закономерность прослеживается и на материале органических реакций (Саркар, Прелог, Працеюс) и следует из того, что пространственные затруднения уменьшают общую скорость реакции, но увеличивают пространственную Направленность реакции, так как стерические препятствия при ААН ФО способствуют образованию предпочтительного диастереомерного переходного состояния, приводящего к образованию одного из энантиомеров. Тем не менее в основном собственный эксперимент послужил авторам основанием для развития такого теоретического подхода к классификации асимметрических реакций. [c.7]

    Итак, несмотря на многообразие и кажущуюся противоречивость накопленных в литературе фактов о влиянии дисперсности и природы носителя на каталитическую активность металлов, часть из которых мы рассмотрели выше, наметился некоторый общий подход к указанной проблеме, который позволяет систематизировать имеющийся материал и сформулировать задачи будущих исследований. Впервые наиболее четкое выражение этот подход получил в работе Будара и сотр. [135], результаты которой приведены на стр. 54. Здесь Будар сформулировал положение о том, что все каталитические реакции можно разделить на два класса незатрудненные и затрудненные . Первые — это такие, по отношению к которым активные центры катализатора обладают примерно одинаковой активностью и удельная активность не зависит от размера частиц и от способа приготовления контакта, как в работе [135]. Ко вторым — относятся такие реакции, для протекания которых необходимы специальные конфигурации атомов на поверхности, образующиеся только в результате подбора соответствующих условий получения. Затрудненные реакции всегда чувствительны к размеру частиц металла, неоднородностям поверхности катализатора и природе носителя. Очевидно, что идея Будара [135] о такой классификации каталитических реакций перекликается с представлениями Баландина о роли геометрического фактора в катализе. Аналогичные соображения, как указывает Будар, содержатся еще в работе 1925 г. Тэйлора [224], который отмечал, что доля каталитически активной поверхности определяется самой катализируемой реакцией. Будар подчеркивает, что для систематического исследования катализаторов существенно, чтобы модельные реакции не были затрудненными. Только в том случае, когда имеется полная уверенность в отсутствии структурных осложнений для изучаемой реакции, корреляции активности со структурой катализаторов могут дать надежные результаты. Кроме реакций неопентана на Pt [160], Будар приводит другие известные из литературы примеры обоих обсуждаемых типов реакций, изученных школой Кемболла на никелевых катализаторах [225] и Кралем—на палладии, нанесенном на уголь [226]. Например, дейтерирование этилена на никеле — незатрудненная реакция по сравнению с реакцией обмена алкилбензолов с дейтерием. Как было показано выше, гидрирование бензола [204—206] относится к незатрудненным реакциям, и это кажется удивительным, если исходить из представлений о секстетном механизме этого процесса. Однако, как отмечает Бонд [222], еще в нескольких работах, доложенных на П1 Международном конгрессе по катализу, было обнаружено образование олефинов в качестве продук- [c.71]

    Бонд [6] дал классификацию кривых зависимости давления от времени, наблюдаемых при гидрировании ацетилена в присутствии Ni-катализатора на пемзе, разделив их на несколько групп. Форма этих кривых зависит от следующих факторов а) начального соотношения перечисленных давлений водорода и ацетилена (г ) б) порядка поступления реагентов, если они вводятся в реакцию раздельно в) предварительной обработки катализатора, когда] реагенты подаются совместно. Манн и Найк в ранее опубликованной работе [3] обсудили эти типы кривых применительно к гидрированию метилацетилена на никелевых катализаторах. Кривая AFG (рис. 1) была получена нами при гидрировании метилацетилена в присутствии нанесенных и ненанесенных Ni-, Fe-, Rh- и Ir-катализаторов, а также на нанесенной Pt при всех начальных соотношениях (г ). Аналогичная кривая была получена и в случае Pt-катализатора на пемзе при 2. Для реакции на Со кинетическая кривая представляла собой прямую вплоть до падения давления до значения, примерно равного начальному давлению метилацетилена (кривая АВ на рис. 1) при г < 2. Для реакции в присутствии Со и Pt, нанесенных на пемзу, при г >> 2 была получена кривая АВС. Кривую аналогичного типа наблюдали Бонд и Уэллс [7] при гидрировании ацетилена на катализаторе Pt/AljOg. В области АВ скорость реакции отвечала уравнению первого порядка по водороду и главным продуктом был пропилен на участке ВС наблюдалось быстрое ускорение реакции и основным процессом было дальнейшее гидрирование пропилена в пропан. [c.307]

    Наиболее логично классифицировать каталитические процессы газоочистки по типу протекающих реакций окисление, гидрирование, гидролиз и т. д. Одпако четко провести такую классификацию не всегда возможно, так как при отдельных процессах протекают одновременно различные реакции и в ряде случаев весьма трудно установить, какая именно реакция преобладает. Поэтому обычно процессы различают или по виду удаляемых примесей, или по характеру химической реакции. Именно этот не всегда последовательный принцип и принят нри дальнейшем изложении материала. Важнейшие применяемые в промышленности процессы каталитической очистки газа охватывают а) превращение органических сернистых соединений, содержащихся в топливных, нефтезаводских и синтез-газах, в сероводород или кислородные соединения серы б) удаление окиси углерода из синтез-газа или инертных газов путем превращения в двуокись углерода или метан в) превращение ацетилена, содержащегося в олефиновых газовых потоках, в этилен методом избирательного гидрирования наконец, г) окисление и восстановление многочисленных нежелательных органических и неорганических соединений, содержащихся в отходящих газах промышленности. Процессы, предназначенные для каталитического окисления сернистых соединений (как сероводорода, так и органических), подробно рассмотрены в главе восьмо , так как эти процессы тесно связаны с сухой очисткой окисью железа и поэтому в большей мере относятся к сухим окислительным, процессам очистки от серы. [c.325]


Смотреть страницы где упоминается термин Классификация процессов гидрирования: [c.103]    [c.248]    [c.647]    [c.248]    [c.647]    [c.74]    [c.211]   
Химия и технология основного органического и нефтехимического синтеза (1988) -- [ c.440 , c.497 , c.498 ]




ПОИСК





Смотрите так же термины и статьи:

Гидрирования процесс



© 2025 chem21.info Реклама на сайте